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Accurate classification is essential for understanding the pathophysiology of a disease and can inform thera-
peutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity 
between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of 
normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to 
more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a bet-
ter definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic 
analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 
11 differentiation states for normal luminal cells. We then applied information from this analysis to classify 
human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated 
by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast 
tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based 
on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes 
were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none 
of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated 
with patient survival differences and provides actionable insights for treating breast tumors.

Introduction
Common classification terminology is necessary for medical prog-
ress. Over the past 2 centuries, normal tissue morphology and func-
tion has been successfully used as a reference point to define various 
diseases. Most notably, such an approach has been used to classify 
hematopoietic tumors, such as lymphomas and leukemias (1).  
The discovery of the morphologic and molecular resemblance of 
various subtypes of leukemias and lymphomas to particular nor-
mal hematopoietic cell types was critical in this process.

Based on this insight, hematopoietic malignancies have been 
classified as B cell and T cell neoplasms (e.g., small lymphocytic, 
large B cell, lymphoblastic, follicular, and mantle cell) that resem-
ble specific normal cell types. Similarly, myeloproliferative dis-
eases are classified as neutrophilic, granulocytic, lymphoblastic,  
prolymphocytic, myeloid, promyelocytic, monocytic, erythrocytic, 
basophilic, and megakaryoblastic neoplasms. Some of the most 
notable and earliest strides against cancers have been made in the 
treatment of hematopoietic malignancies (2). While many fac-
tors have contributed to this success, the accurate classification 
of hematopoietic malignancies played an important role. The 

identification of cell-type specific cluster of differentiation (CD) 
markers on the surface of these cells permitted efficient immu-
nophenotyping (3). These CD markers were later used to identify 
lymphomas and leukemias with a phenotype nearly identical to a 
specific normal cell type, allowing the development of the current 
classification system of these diseases (4). Despite major successes 
in rationally classifying and treating hematological malignan-
cies, the use of normal cell types to classify solid tumors has not 
been widely emulated. A major reason for this has been our lack of 
understanding of the diversity of cell types in most solid tissues.

Characterization of normal cell subtypes in solid tissues has 
been challenging. Until recently, only 2 cell types have been mor-
phologically described in the human breast: the inner luminal cells 
and the outer myoepithelial cells (5). This limited understanding 
of the cell types comprising the breast ducts has precluded the 
development of a normal cell type–based classification system. 
While there has been more recent interest in normal breast cell 
subtypes, this research has been difficult to correlate with exist-
ing human breast tumor phenotypes (6). Numerous markers have 
been used to describe normal human mammary stem/progenitor  
cells, including CD44hiCD24lo, aldehyde dehydrogenase–high 
(ALDHhi), CD10+, Ep-CAM+MUC1−, and Ep-CAMhiCD49f+. 
Whether these stem/progenitor cell markers identify the same cell 
populations remains unknown. Furthermore, Tlsty and colleagues 
discovered that human breast cells can exhibit extensive lineage 
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plasticity (7), which may explain why marker profiles have been 
difficult to associate with distinct tumor subtypes.

Clinically, human breast cancers are grouped into 3 categories 
based on the presence of estrogen receptor (ER+), progesterone 
receptor (PR+), and human epidermal growth factor receptor 2  
(HER2+), or by their absence in triple-negative breast cancers 
(TNBCs; i.e., ER–PR–HER2−).

In the research setting, mRNA profiles have been used to define 
prognostic subtypes of breast cancer: luminal A, luminal B, basal-
like, claudin-low, and HER2-like (8). DNA methylation patterns 
have also been used to identify 5 distinct DNA methylation groups 
(9), and 10 different breast cancer clusters have been identified in 
a genome-driven integrated classification system, each associated 
with distinct clinical outcomes (10, 11). Several additional mRNA 
expression–based molecular prognostic panels, such as Oncotype 
Dx, PAM50, and MammaPrint, have also emerged with potential 
clinical utility (12).

The main evidence supporting the importance of each of these 
molecular subtypes has been identification of patient groups 
with different outcomes. Hence, it is important to recognize that 
these molecular subtypes are prognostic categories, different 
from disease taxonomy. Therefore, while these molecular prog-
nostic tools have been useful in the research setting, they have 
not produced a commonly agreed-upon new system of classifica-
tion that is uniformly used in the clinic. This is partly because 
each molecular platform appears to produce a different prognos-
tic classification. A breast cancer task force recently concluded 
that at the moment, molecular tools do not provide sufficiently 
robust information beyond histological type, grade, and ER/PR/
HER2 status (13). Thus, these molecular tests are not routinely 
performed at most institutions (14).

It is increasingly becoming clear that a more fundamental breast 
cancer classification system, one that does not conflate prognos-
tic categories with diagnostic categories, is needed. Ideally, such 
a system should be robust and not change depending on which 
technological platform is used to classify breast cancer. Inspired by 
the classification of hematopoietic malignancies, we hypothesized 
that differentiation states of normal cell populations in normal 
human breast may provide such a reference classification system 
for human breast tumors.

Results
The normal human breast is composed of milk-producing lobules 
and interlobular ducts that transport the milk to the nipple (Sup-
plemental Figure 1A; supplemental material available online with 
this article; doi:10.1172/JCI70941DS1). This anatomical distinc-
tion is important for understanding breast cancer, because in addi-
tion to ER/PR/HER2 status, human breast tumors are classified by 
pathologists on morphological grounds, either as ductal carcinomas 
or as lobular carcinomas, for reasons unrelated to their cell of origin. 
This arcane terminology has resulted in a common misconception 
that ductal and lobular breast cancers initiate in the normal ducts 
and lobules, respectively. However, despite their names, almost 
all of the early progression steps for both tumor types almost 
exclusively involve the breast lobules. Thus, in the present study, 
we specifically examined the normal cells in the lobules using 
immunohistochemical (IHC) staining, which preserves tissue archi-
tecture and allows for discrimination of ducts, lobules, and differ-
ent layers of the epithelium (see below). For a list of the 37 primary  
antibodies used in these studies, see Supplemental Table 1.

Analysis of CD markers and intermediate filaments in normal human 
breast. An ideal cell type–specific immunostain marker should have 
a bimodal expression pattern (i.e., one subpopulation is clearly 
negative, and the other strongly positive). While CD markers have 
been useful in isolating breast cell types using FACS, we found that 
they had a gradient-type expression pattern in situ that limited 
their utility to define cell subtypes using semiquantitative meth-
ods such as IHC (Supplemental Figure 1).

In an attempt to identify molecules with bimodal expression 
patterns in normal human breast, we examined the expression 
of intermediate filaments. These molecules are differentially 
expressed in distinct cell types, and their expression is both  
tissue- and cell type–specific. Furthermore, it has been well recog-
nized that cell type–specific expression of intermediate filaments 
is preserved in tumors and can be used to determine the tissue 
origin of tumors (15). We found that keratin 5 (K5), K7, K8, K14, 
K17, K18, and K19 were useful in identifying subpopulations of 
human breast cells, because they were expressed in a bimodal pat-
tern (Supplemental Figure 2).

Next, we subjected normal breast tissues from 36 breast reduc-
tion mammoplasty procedures to IHC with K5, K7, K8, K14, K17, 
K18, K19, CD10, SMA, and p63. Normal breast lobules and ducts 
are lined by a bilayer epithelium, consisting of an inner layer of 
milk-producing luminal cells and an outer layer of supportive 
myoepithelial cells. As previously shown (16), we found that K7, 
K18, and claudin-4 (Cld-4) were expressed in all luminal cells, but 
not in myoepithelial cells (Figure 1A and Supplemental Figure 2A). 
In contrast, CD10, SMA, and p63 were expressed in all myoepithe-
lial cells, but not in luminal cells (Supplemental Figure 2). Thus, 
these markers constitute a pan-luminal versus pan-myoepithelial 
panel. Interestingly, in some lobules, luminal cells were K19–  
(Figure 1B); thus, K19 was not a pan-luminal marker.

In human skin, K5/14/17 are exclusively expressed in the basal 
layers; in mouse mammary tissue, they are expressed in the myo-
epithelial layer (Supplemental Figure 2C). Hence, these keratins 
are usually referred to as basal keratins. However, in normal human 
breast tissue, K5/14/17 were expressed in both luminal and basal 
layers, depending on location. In the interlobular ducts, K5/14/17 
were expressed in the myoepithelial (basal) layer, as expected (Sup-
plemental Figure 1B and Supplemental Figure 2, D–F). However, 
in the lobules, the site where precursor lesions develop, K5/14/17 
were expressed in the luminal layer (Figure 1, C–E, Supplemental 
Figure 1J, Supplemental Figure 2, G–I, and ref. 6). We confirmed 
the luminal nature of these cells with double IHC, which demon-
strated that the K5+, K14+, or K17+ cells were Ki67/ER– (Figure 1, 
G–J) and CD10/SMA/K17– (Supplemental Figure 2, J–L) and were 
located above the CD10/SMA/K17+ myoepithelial cell layer (Sup-
plemental Figure 2, J–L). We did not find luminal K5+ cells in the 
mouse breast (Supplemental Figure 2C).

We identified luminal K5+, K14+, or K17+ cells in all 36 patients 
examined; thus, this was a robust and highly reproducible lumi-
nal cell subpopulation. Interestingly, while some lobules had a 
small percent of luminal K5+, K14+, or K17+ cells, adjacent lob-
ules were entirely composed of K5+, K14+, or K17+ luminal cells 
(Supplemental Figure 2, M–P).

When 2 different cell lineages are defined by mutually exclu-
sive expression of markers, coexpression of these markers in the 
same cell has been used as evidence of “stemness.” Previously, 
coexpression of K5/14/17 with K7/8/18 has been interpreted as 
evidence for bipotential cells. Here, however, some lobules were 
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entirely composed of K14+K18+ or K5+K18+ double-positive cells in 
nearly every tissue section examined (Figure 1F and Supplemental 
Figure 2, Q–U). On average, 36% of luminal cells were K14+K18+  
(n = 746), and 16% were K5+K18+ (n = 1,339). Importantly, K5/14+ 
cells also expressed MUC1, a marker of luminal differentiation 
(Supplemental Figure 2V). It would be extremely unusual to find 
an epithelial tissue entirely composed of progenitor/stem cells. 
Thus, our results indicated that the luminal layer cells coexpress-
ing K5/14/17 with K18/19 are more consistent with a differenti-
ated luminal cell variety (6, 17).

Analysis of hormone receptors in normal human breast. Having identi-
fied 2 subtypes of luminal layer cells based on K5/14/17 expres-
sion, we next characterized the expression of hormone receptors 
(HRs) in these cells, because they are involved in differentiation 
and some have a bimodal expression pattern.

In an initial survey, 3 receptors — ER, androgen receptor (AR), 
and vitamin D receptor (VDR) — stood out with distinct bimodal 
expression patterns. Many of the other HRs (i.e., TRHα, TRHβ, 
PTH1R, OXTR, SSTR1, SSTR2, SSTR3, SSTR5, RARα, RARβ, 
RXRα, and RXRβ) did not appear to have a bimodal expression 
pattern. Because PR expression tracks with ER expression, we did 
not include PR in this study.

Next, we carried out double IHC on normal breast sections and 
counted cells in 5 different sections for coexpression of various 
markers (Supplemental Table 2). Double IHC demonstrated that 
all ER+ cells were luminal and did not overlap with K5/14/17+ lumi-
nal cells (<0.3% overlap, n = 3,313) or with Ki67+ proliferating cells  

(0.1% overlap, n = 1,206) (Figure 1, G and J, and Supplemental Table 2).  
Nearly all proliferating Ki67+ cells were K18+ luminal cells that 
were negative for the myoepithelial markers CD10 (0.5% overlap, 
n = 1,084) and K5/14/17 (0%–1.9% overlap, n = 1,078) (Figure 1K  
and Supplemental Table 2). These results allowed us to define 
4 mutually exclusive subsets of luminal cells in normal human 
breast that were all positive for the pan-luminal markers K7 and 
K18 (Figure 1L): (a) ER+ cells, (b) K5/14/17+ cells, (c) ER−K5/14/17− 
cells, and (d) Ki67+ cells.

Double IHC demonstrated that all AR+ cells were luminal, and 
they were also mutually exclusive with K5/14+ cells (0.0% overlap, 
n = 789) and Ki67+ cells (0.0% overlap, n = 698) (Figure 2, A and B, 
and Supplemental Table 2). AR+ cells partially overlapped with ER+ 
cells (44% overlap, n = 429) (Figure 2C and Supplemental Table 2). 
These results allowed us to describe 3 subsets of HR+ cells: ER+, 
AR+, and ER+AR+ (Figure 2D). Double IHC demonstrated that 
VDR+ cells were exclusively in the luminal layer as well, with no 
overlap with CD10+ myoepithelial cells or proliferating Ki67+ cells 
(0.0% overlap, n = 179), but they did partially overlap with K5/14+ 
cells (15%–23% overlap, n = 266), AR+ cells (16%–35% overlap,  
n = 835), and ER+ cells (22%–74% overlap, n = 749) (Figure 2, E–I, 
and Supplemental Table 2).

Triple IHC also demonstrated the presence of triple-HR+ cells 
(i.e., ER+AR+VDR+; Figure 2, K and L). These results allowed us 
to describe 7 subsets of HR+ cells in the luminal layer of human 
breast lobules: ER+, AR+, VDR+, ER+AR+, ER+VDR+, AR+VDR+, and 
ER+AR+VDR+ (Figure 2N). Interestingly, only VDR+ cells substan-

Figure 1
Expression of intermediate filaments and ER in normal 
human breast. Single and double IHC with immunoperoxi-
dase (A–E, G, I, and K) and merged IHC images (F and J) of 
normal human FFPE sections are shown. (A) K7/18 (brown). 
(B) K18 (red) and K19 (brown). (C) K5/14 (brown). (D) CD10 
(red) and K14 (brown). (E) K5/14 (brown) and SMA (red). 
(F) K18 (green) and K14 (red). Merged K14+K18+ appears 
yellow. (G) K5/14 (red) and ER (brown). We designated 
this population of cells K5/14/17+ because the tissue sec-
tions were not stained simultaneously with these markers. 
(H) Differentiation states of normal luminal epithelial cells, 
based on expression of ER and keratins. (I) Ki67 (brown) and 
K5/14 (blue). (J) ER (green) and Ki67 (red). (K) K18 (red) 
and Ki67 (brown). (L) Differentiation states of normal luminal 
epithelial cells, based on ER, keratins, and Ki67. Represen-
tative images were selected from multiple patient samples  
(n = 36). Original magnification, ×20 (A); ×40 (B); ×200 (F); ×400  
(C, G, and I–K); ×600 (D and E). See http://sylvester.org/ince 
for additional high-resolution images.
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tially overlapped with K5/14/17+ luminal cells, and the proliferat-
ing K18+Ki67+ luminal cells were ER–AR–VDR–K5/14– (Figure 2M).

Cumulatively, in the luminal layer of normal human breast, we 
were able to define 11 differentiation states (Table 1), including 
3 HR– states (collectively designated group HR0, states L1–L3; 
ER–AR–VDR−), which were either K5/14/18– (L2; 52%–83%) or 
K5/14/18+ (L3; 17%–48%, n = 2,085), and 8 HR+ states, grouped as 
single-HR+ (HR1, states L4–L7; ER+, AR+, or VDR+), double-HR+ 
(HR2, states L8–L10; ER+AR+, ER+VDR+, or AR+VDR+), or triple-
HR+ (HR3, state L11; ER+AR+VDR+).

In the myoepithelial layer, all cells expressed CD10, SMA, and 
p63, with 2 subtypes, K5/14/17− and K5/14/17+ (designated My1 
and My2, respectively; Table 1). Proliferating cells were very uncom-
mon in the myoepithelial layer; CD10 and Ki67 overlapped in only 
0.5% of the cells (Figure 2J, Table 1, and Supplemental Table 2).

Simultaneous examination of 12 markers in normal human breast with a 
novel multiplex immunofluorescence method. In the above experiments, 
we were able to stain the same formalin-fixed, paraffin-embedded 
(FFPE) section with up to 3 different antibodies simultaneously. 
A greater number of antibodies is difficult to multiplex by conven-
tional methods, for multiple reasons (see Supplemental Methods).

To confirm simultaneous coexpression patterns predicted by 
double and triple IHC for all 12 different markers (ER, AR, VDR, 
K5, K7, K8/18, Cld-4, CD10, SMA, Ki67, NaKATPase, and DAPI), 
we wanted to examine their expression in the same cells. Recently, 
a new technology has been developed by GE Healthcare that allows 
for immunofluorescence (IF) of the same tissue section with more 
than 10 different antibodies serially (known as multiplex IF;  
ref. 18), which was used to confirm all of our results (Figure 3, 
Supplemental Figure 3, and Supplemental Methods).

We used image analysis software for quantitative analysis of our 
multiplex IF for ER, AR, VDR, K5, and Ki67 in individual cells. Each 
cell was numbered by the image analysis software, and the fluores-
cent signal specifically from the luminal epithelium was measured 
for each marker. We plotted the results for each marker as a per-

centage of total fluorescence for each cell. This analysis allowed us 
to correlate the expression of these markers in >300–500 individual 
cells in lobules from 8 different patients (Figure 4 and Supplemen-
tal Figure 3C). Based on the double IHC analysis (Figures 1 and 2),  
we had deduced that there were inverse correlations between Ki67 
and K5, between Ki67 and ER/AR/VDR, and between K5 and  
ER/AR (Supplemental Table 2). Multiplex IF allowed us to dem-
onstrate all of these complex trends for the first time in individual 
cells (Figure 4 and Supplemental Figure 3).

These observations highlighted 4 predominant, mutually exclu-
sive differentiation patterns in the luminal layer: a HR+ state, a 
proliferative state (Ki67+), and 2 HR– states, one K5+ and the other 
K5– (Figure 4 and Supplemental Table 2). Consistent with this, we 
observed that Ki67+ and K5+ cells were rare in lobules that were 
enriched in HR+ cells (Supplemental Figure 3D). When K5+ cells 
expanded, HR+ and Ki67+ cells decreased, and in highly prolif-
erative areas, there were very few HR+ or K5+ cells (Supplemental  
Figure 3D). Hence, it appears that a given cell can exist in only one 
of these differentiation states at one time.

Analysis of HR+ and HR– cell types in ER+ breast tumors. The remark-
able heterogeneity observed at the single-cell level in normal breast 
epithelium was reminiscent of the distinct features of normal 
hematopoietic cell populations. Because hematological malignan-
cies maintain normal cell type– and differentiation-specific pat-
terns, we next asked whether breast tumors do as well.

We evaluated the staining pattern of 12 protein markers in  
20 full FFPE sections using IHC, then confirmed the results using 
tissue microarrays (TMAs) that contained 216 tumors (51 ER+,  
46 HER2+, and 119 TNBC) (Figure 5). Staining was scored by com-
bining percent expression and staining intensity on a 0–25 expres-
sion scale (Supplemental Figure 4).

In both tissue sets, we observed that all ER+ human breast can-
cers strongly expressed multiple pan-luminal markers (Cld-4, 
K7, and K18), whereas none were positive for pan-myoepithelial 
markers (CD10, SMA, and p63) (Figure 5A). All ER+ breast cancers 

Table 1
Cellular differentiation states in normal human breast lobules

Cell type  ER AR VDR K5/14/17 Ki67 Cld-4 K7/8/18 CD10/SMA/p63

Luminal
L1 (HR0) Ki67+ – – – – + + + –
L2 (HR0) K18+ – – – – – + + –
L3 (HR0) K5+ – – – + – + + –
L4 (HR1) ER+ + – – – – + + –
L5 (HR1) AR+ – + – – – + + –
L6 (HR1) VDR+ – – + – – + + –
L7 (HR1) K5+VDR+ – – + + – + + –
L8 (HR2) ER+AR+ + + – – – + + –
L9 (HR2) ER+VDR+ + – + – – + + –
L10 (HR2) AR+VDR+ – + + – – + + –
L11 (HR3) ER+AR+VDR+ + + + – – + + –

Myoepithelial
My1 CD10+ – – – – – – – +
My2 K5+ – – – + – – – +

IHC of normal breast sections from multiple donors (n = 36) with 14 different markers identified multiple normal breast cell subtypes. We grouped the 11 dif-
ferentiation states in the luminal layer of human breast lobules (L1–L11) into HR0–HR3. All luminal cells expressed K7/8/18 and Cld-4. In the myoepithelial 
layer, all cells expressed CD10/SMA/p63, with 2 subtypes that were either K5/14/17− (My1) or K5/14/17+ (My2).
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were K5/14–. Interestingly, the majority of ER+ tumors were VDR+ 
(93%), and two-thirds were AR+ (59%) (Figure 5A). This pattern 
was identical to that of normal breast ER+ cells, which could coex-
press AR or VDR, but were very rarely K5/14/17+ or CD10/SMA+.  
These results indicate that all ER+ tumors have a luminal phe-
notype identical to HR+ normal luminal cell type L4, L8, L9, or 
L11 (Figure 5A and Supplemental Table 3). Intriguingly, we also 
observed that, similar to normal tissues, most proliferating tumor 
cells (Ki67+) were ER–AR–VDR–, with focal VDR+ proliferating 
tumor cells (Supplemental Figure 5).

Analysis of HR+ and HR– cell types in HER2+ breast tumors. In 
HER2+ tumors, we observed strong expression of multiple pan-
luminal markers (Cld-4, K7, and K18) and none of the pan-myo-
epithelial markers (CD10, SMA, and p63) (Figure 5B). Nearly 

all HER2+ tumors (44 of 46) had a luminal phenotype identical 
to that of HR+ normal breast cells (i.e., L4–L11). A minority of 
HER2+ tumors (2 of 46) were similar to HR– cells (Figure 5B and 
Supplemental Table 5).

Analysis of HR+ and HR– cell types in TNBCs. TNBCs are defined as 
ER–PR–HER2–. We examined 119 TNBCs for the expression of HRs 
and keratin markers, which revealed 3 major subgroups (Figure 5C  
and ref. 19). Nearly 66% of TNBCs (78 of 119) had a pure lumi-
nal phenotype, positive for pan-luminal markers and negative for 
pan-myoepithelial markers; of these, 37 were identical to K5/14– 
HR0 luminal cells (designated luminal 1), and 41 were identical to 
K5/14+ HR0 luminal cells (luminal 2) (Figure 5C and Supplemen-
tal Table 5). All remaining TNBCs (33%, n = 41) strongly expressed 
luminal markers (Cld-4, K7, AR, VDR, and K18), but 38 of these 

Figure 2
Expression of intermediate filaments, ER, AR, and VDR in normal human breast. Double IHC (A and J) and merged images (B, C, E–I, and 
K–M) of normal human breast FFPE sections, as well as differentiation states of luminal (D and N) and myoepithelial (O) cell types, are shown. 
(A) K5/14 (red) and AR (brown). (B) AR (green) and Ki67 (red). (C) ER (green) and AR (red). Merged ER+AR+ appears yellow. (D) Differentiation 
states of normal luminal epithelial cells based on presence of ER, keratins, Ki67, and AR. (E) CD10 (green) and VDR (red). (F) VDR (red) and Ki67 
(green). (G) K5 (green) and VDR (red). (H) AR (green) and VDR (red). Merged AR+VDR+ appears yellow. (I) ER (green) and VDR (red). Merged 
ER+VDR+ appears yellow. (J) CD10 (red) and Ki67 (brown). (K) ER (green), AR (red), and VDR (blue). Merged ER+AR+ appears yellow; merged 
ER+VDR+ appears purple. (L) ER (green), AR (green), and VDR (red) shown individually. In the merged image, ER+AR+VDR+ (i.e., HR3) appears 
white. (M) HR3 (green), Ki67 (red), and DAPI (blue; nuclear marker). (N and O) Differentiation states of normal luminal (N) and myoepithelial  
(O) breast cells based on the full marker panel. Representative images were selected from multiple patient samples (n = 36). Original magnifica-
tion, ×200 (A–C, E–K, and M); ×400 (L). See http://sylvester.org/ince for additional high-resolution images.
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tumors also expressed myoepithelial markers (CD10, SMA, and 
p63) (Figure 5C), consistent with a mixed phenotype.

In summary, 95% of human breast tumors were phenotypi-
cally identical to one of the normal luminal breast cell subtypes 
(Supplemental Table 3), similar to lymphomas and leukemias. 
For the remaining 5% (HR0 tumors with a mixed phenotype), it 
is possible that their normal counterparts are rare progenitor cells 
with a mixed luminal/myoepithelial phenotype (20), or that these 
tumors exhibit an altered phenotype due to mutations that result 
in inappropriate expression of these markers.

Expression of normal basal versus luminal-specific mRNAs in TNBC. 
The cell of origin of TNBC has been of great interest recently (21). 
As mentioned above, K5/14/17 are expressed in the basal layers of 
human skin and rodent mammary glands (Supplemental Figure 2C). 
Thus, these keratins have been commonly referred to as basal kera-
tins in the literature (17), and TNBCs that express them have been 
called basal-like carcinoma (BLC) (22). Consequently, some have 
suggested that these tumors are similar to myoepithelial (basal) cells 
of the normal breast. However, as we demonstrated here, K5/14/17 
were predominantly expressed in the luminal layer of normal human 
breast lobules, and K5/6+ BLCs expressed markers identical to those 
of L3 and L7 luminal cells (Table 1 and Supplemental Table 3).

Because the TNBC/BLC category 
was based on mRNA expression 
in microarray analysis (23–25), 
we also carried out an analysis of 
mRNA in normal human breast 
cells, by combining results from 
3 different studies that profiled 
highly purified luminal versus 
myoepithelial cells (26–28). We 
found that 131 mRNAs were iden-
tified as luminal-specific and 90 as 
myoepithelial-specific in at least 
2 of the 3 datasets (Supplemental 
Table 4), providing a strong con-
sensus signature distinguishing 
normal luminal versus myoepithe-
lial cells. Next, we examined the 
expression of these genes in basal-
like and non-basal-like human 
breast tumors (29–32).

Interestingly, no significant cor-
relation was observed between  
basal-like tumors in these cohorts 
and the expression signature of 
normal basal/myoepithelial cells 
(P = 0.22, Fisher exact test; Supple-
mental Figure 6A). Thus, the dif-
ferentiation state of BLC is most 
similar to K5/14/17/18+ normal 
luminal cells of the breast (L3; Sup-
plemental Table 5), and the name 
basal-like is probably not an accu-
rate description of neither their 
differentiation state nor their cell 
of origin (6, 17, 21, 33, 34). In some 
cohorts, patients with basal-like 
tumors have a worse outcome than 
those with TNBC tumors (22); 

here, we did not observe a significant difference between K5/6+ 
versus K5/6– TNBC patients (Supplemental Figure 6B).

Distribution of HR0–HR3 breast tumor phenotypes in the NHS cohort. 
Based on the above results, we hypothesized that human breast 
tumors can be classified according to normal breast differentia-
tion states and tested this hypothesis using a breast cancer cohort 
from the Nurses’ Health Study (NHS), with >25 years of follow-up 
from a large number of patients (n = 1,731) (35–37). We conducted 
IHC of NHS TMAs with ER, PR, HER2, VDR, AR, K8/18/Cld-4, 
K5/6, and CD10/SMA/p63 antibodies and scored them semi-
quantitatively into 4 categories based on normal tissue differentia-
tion: HR3 (ER+AR+VDR+), HR2 (ER+AR+, AR+VDR+, or ER+VDR+), 
HR1 (ER+, VDR+, or AR+), and HR0 (ER–AR–VDR–).

Importantly, the 4 HR categories are different from the cur-
rent ER+, HER2+, and TNBC classification. For example, based on 
standard classification, 75% of NHS study patient tumors were 
ER+ (n = 1,356), 10% were HER2+ (n = 177), and 15% were TNBC  
(n = 253) (Figure 6A and Supplemental Table 5). These were reclas-
sified as 58.1% HR3 (n = 1,006), 24.8% HR2 (n = 429), 10.7% HR1  
(n = 185), and 6.4% HR0 (n = 111) (Figure 6B), because each stan-
dard breast cancer subtype was composed of multiple HR groups: 
of ER+ tumors, 75.1% were HR3, 23.4% were HR2, and 1.5% were 

Figure 3
Multiplex IF of 12 markers in normal human breast. (A–I) 1 FFPE section of normal breast epithelium 
was stained serially with each antibody for the markers (A) pan-keratin (Pan-K, green), (B) K18 (red), 
(C) K5 (red), (D) DAPI (blue), (E) ER (green), (F) AR (green), (G) VDR (red), (H) Ki67 (red), and (I) SMA 
(green). (J–O) The individual IF staining images were merged to reveal the coexpression pattern of 
all markers in each cell. (J) K5 (red) and SMA (green). (K) K5 (red) and K18 (green). (L) ER (red), AR 
(green), and K5 (blue). (M) VDR (red) and ER (green). (N) VDR (red) and AR (green). (O) AR (red), ER 
(green), and VDR (blue). (P) Differentiation states of normal luminal breast cells based on the full marker 
panel. Representative images were acquired using multiplex IF technology (GE Healthcare). Original 
magnification, ×200 (A–O). See http://sylvester.org/ince for additional high-resolution images, including 
K7, Cld-4, NaKATPase, and CD10 stains.
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HR1; of HER2+ tumors, 29.4% were HR3, 43.5% were HR2, 22.0% 
were HR1, and 5.1% were HR0; of TNBC tumors, 36.8% were 
HR0, 44.6% were HR1 (i.e., AR+ or VDR+), and 18.6% were HR2  
(i.e., AR+VDR+) (Supplemental Figure 7A and Supplemental Table 5).  
Thus, our HR-based classification approach does not merely 
rename existing groups, but organizes tumors in a new way.

Analysis of breast cancer outcomes based on normal cell lineage phe-
notypes. We next investigated whether the HR0–HR3 categories 
correlated with breast cancer survival and found a strong asso-
ciation between the total number of positive receptors and out-
come. Kaplan-Meier analyses of the NHS cohort showed that 
patients with HR3 tumors had the best survival, those with HR1 
tumors had the worst survival, and those with HR2 tumors had 
intermediate survival (P < 0.0001; Figure 6C). In multivariate 
analysis, these differences remained significant: compared with 
HR3 tumors, the relative hazard ratio (RHR) for HR2 tumors 
was 2.9 (95% CI, 1.60–5.21); for HR1 tumors, the RHR was 5.3 
(95% CI, 2.77–9.97), and for HR0, the RHR was 6.9 (95% CI,  
3.37–14.39) (Supplemental Table 6).

Interestingly, the HR0 group had a biphasic outcome curve 
similar to that of HR1 tumors, with the worst outcome during 
the first 5 years, followed by a flat curve thereafter (Figure 6C),  
consistent with an excellent outcome. Thus, we reevaluated 
the association stratified by time, before and after a 5-year 
cutoff. During the first 5 years, HR3 tumors had the best out-
come; compared with HR3, HR2 tumors had a worse outcome  
(RHR, 1.69; 95% CI, 1.14–2.50), and HR1 tumors (RHR, 2.44; 95% 

CI, 1.55–3.84) and HR0 tumors (RHR, 2.7; 95% CI, 1.56–4.70) had 
the worst outcome (P < 0.0001; Supplemental Figure 7, B and C, 
and Supplemental Table 6). After 5 years, there was no significant 
difference among HR3, HR2, and HR1 (P > 0.5), but HR0 had a 
better outcome (RHR, 0.34; P = 0.02; Supplemental Figure 7D).  
Analyzing the HER2 groups separately did not change these 
results (Supplemental Figure 7E). In a multivariate analysis, these 
differences remained significant even after accounting for other 
factors, such as age, stage, grade, HER2 status, treatment, and 
radiation (Supplemental Tables 5 and 6).

We evaluated our survival results at the mRNA expression level 
by examining a meta-dataset of gene expression TMAs from  
855 human breast tumors (38). Kaplan-Meier analyses for relapse-
free survival showed that women with HR3 tumors had the best 
outcome, HR1 and HR0 tumors were the most aggressive, and 
HR2 tumors were intermediate between these groups. Unlike the 
IHC-based HR categories, which had significant overall survival 
differences (P < 0.0001; Figure 6C), there was a more modest over-
all relapse-free survival difference among the mRNA-based HR 
groups (P = 0.13; Figure 6D). However, lung metastasis relapse-
free survival differences among mRNA-based HR groups were sig-
nificantly different (P = 0.0014; Supplemental Figure 7F). Taken 
together, these data support a correlation of ER/AR/VDR with 
tumor differentiation state: more differentiation correlates with 
less aggressive behavior. Importantly, these results suggest that 
measurement of ER, AR, and VDR protein levels may be more rel-
evant than mRNA levels.

Figure 4
Multiplex analysis of 12 markers in normal human breast. Histograms of relative ER, AR, VDR, K5, and Ki67 expression in each luminal cell 
in normal human breast lobules 1–4. Cell number is plotted against percent contribution of each marker to total fluorescence of each cell. See 
Supplemental Figure 3 for additional lobules.
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Analysis of HR+ and HR– cell types in breast cancer cell lines. We next 
examined whether the HR0–HR3 phenotypes are preserved in 
breast cancer cell lines. Publicly available mRNA expression data 
from more than 50 breast cancer cell lines were analyzed (39), 
which revealed that most tumor cell lines fell into one of the  
normal cell-of-origin categories.

We found that the HR+ pure luminal breast cancer cell lines 
(ER/AR/VDR+; n = 16) rarely expressed K5/14/CD10/SMA, 
as expected (Supplemental Figure 8A). This was also true for 
the HER2+ tumor cells lines (n = 13), which rarely expressed  
K5/14/CD10/SMA, but were occasionally AR/VDR+, as expected. 
7 cell lines had a TNBC luminal 2 phenotype (BT-20, SUM149, 
HCC38, HCC-1187, BPLER, HCC-1143, HCC-1500), and 6 cell 
lines had a TNBC mixed phenotype (MDA-MB-468, HCC1937,  
HCC-70, HMLER, HCC-3153, HCC2157) (Supplemental Figure 8A).  
We also confirmed these phenotypes at the protein level in breast 
cancer cell lines, in order to select a subset of lines that closely 
conformed to in vivo HR phenotypes (Supplemental Figure 8,  
B and C). This set of breast cancer cell lines was then examined for 
in vitro drug response studies.

Interestingly, 9 cell lines that are frequently used as models 
of human TNBC (MDA-MB-231, SUM-159PT, MDA-MB-157, 
MDA-MB-436, HBL100, BT549, SUM1315M02, MDA-MB-435, 
and HS578T) had expression profiles that were not present either 
in normal breast cells or in human breast cancers (i.e., negative 

for most HRs and epithelial markers; Supplemental Figure 8A). 
Since this profile is almost never seen in vivo, either these cells have 
lost their original phenotype, or they were derived from very rare 
tumor types, cautioning against their frequent use.

Response of breast cancer cell lines to HR inhibition. The HR0–HR3 
classification of breast cancers not only correlated with clinically 
significant outcome groups, but may also provide insights about 
how the treatment of these patients might be personalized. For 
example, we envisioned that HR3 tumors might be treated using 
triple-hormone therapy (ER antagonists plus AR and VDR ago-
nists), and tested some of these concepts in breast cancer cell lines.

There are currently very few effective treatments against TNBCs, 
because they are ER– and HER2–. However, because 63% of TNBCs 
were AR+, VDR+, or AR+VDR+, hormone treatment might be pos-
sible in a majority of TNBCs, in combination with chemotherapy. 
Cell lines BT-20, MDA-MB-468, and SUM159 only expressed VDR, 
corresponding to the HR1/TNBC phenotype. We found that com-
bining the VDR agonist calcitriol with taxol additively inhibited 
proliferation of these HR1 breast cancer cells more effectively than 
either drug alone (Supplemental Figure 9A).

A similar combination treatment strategy can be also employed 
in ER+ tumor cells; for example, the HR2 ZR75B cell line was 
ER+VDR+, and combining calcitriol with low doses of the ER 
antagonist ICI182,780 (0.5 nM) additively inhibited prolifera-
tion of these cells (Supplemental Figure 9B). In another example, 

Figure 5
Identification of normal cellular phenotypes in human breast 
tumors. Heat maps of Cld-4, K7, K18, VDR, AR, K5, K14, CD10, 
SMA, p63, PR, ER, and HER2 protein levels in 216 human breast 
cancer tumors, separated into (A) ER+ (n = 51), (B) HER2+  
(n = 46), and (C) TNBC (n = 119). Luminal markers (Cld-4, K7, 
K18, VDR, and AR) and basal markers (CD10, SMA, and p63) 
are indicated. TNBCs are separated into luminal 1 (LM1; K5/14–), 
luminal 2 (LM2; K5/14+), and mixed (M; expressing both luminal 
and myoepithelial markers) subtypes. TMA sections were sub-
jected to IHC and scored using light microscopy on a scale of 0 
(blue, low expression) to 25 (yellow, high expression), with white 
denoting intermediate expression. Corresponding normal cell 
counterparts are illustrated next to each heat map. 
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the combination of the AR agonist R1881 (50 nM) with calcitriol  
(50 nM) additively inhibited proliferation of the HR3 breast cancer 
cell line T47D (Supplemental Figure 9C).

In HER2+ breast cancer cells, we observed that the combination 
of the AR antagonist flutamide (45 μM) and the HER2 inhibi-
tor lapatinib (0.5 μM) additively inhibited proliferation of the  
HR2/HER2+ cell line MDA-MB-453 (Supplemental Figure 9D). Simi-
larly, the combination of ICI182,780 (0.5 nM) and lapatinib (10 nM) 
additively inhibited proliferation of the HR3/HER2+ cell line BT474 
(Supplemental Figure 9E). In control experiments, no inhibition was 
observed with the ER antagonist ICI182,780 in HR2 AR+VDR+ (i.e., 
ER–) MDA-MB-453 cells or with the VDR agonist calcitriol in HR2 
AR+ER+ (i.e., VDR–) BT549 cells (Supplemental Figure 9, F and G).

Because nearly 95% of HER2 tumors expressed at least 1 HR, 
and 29% expressed all 3 HRs, these results indicate that hormone 
treatment might also be possible in a majority of HER2 tumors in 
combination with anti-HER2 therapy.

Discussion
In the present study, we analyzed more than 15,000 normal breast 
cells and described 11 previously undefined cell subtypes in the 
luminal layer of human breast, L1–L11. These 11 normal breast 
cell types conformed to 4 novel hormonal differentiation groups, 
HR0–HR3. Analysis of 3,157 human breast tumors revealed that 
each tumor was similar to 1 of the 11 normal cell types and HR 
groups. Almost none of the breast cancers exhibited a pure basal-
like phenotype, as defined by the expression of true myoepithelial 
markers and the absence of any luminal markers. Nearly all human 
breast tumors replicated one of the normal hormonal differen-
tiation groups (HR0–HR3), and we found that these subgroups 
exhibited significant survival differences. Our ontological classifi-
cation scheme provides actionable hormonal treatment strategies 
for all subtypes of human breast cancer.

Taxonomy dilemma: lumpers versus splitters. Historically, the chal-
lenges of taxonomy have led to 2 opposing taxonomic approach-
es: lumping and splitting. Lumpers prefer a few categories marked 
by large similarities that have clear practical utility; splitters tend 
to describe as many entities as possible with small differences, 
regardless of practical utility. Charles Darwin has been credited 
with using the terms first, when he wrote in a letter, “Those who 
make many species are the ‘splitters,’ and those who make few are 
the ‘lumpers’” (40). In medicine, this divide is exacerbated when a 
clear mechanistic understanding of a disease entity is incomplete.

High-throughput technologies — such as mRNA, miRNA, SNP, 
and epigenetic profiling as well as next-generation sequencing — 
have unveiled a complex heterogeneity of breast tumors in individ-
ual patients (9, 10, 22, 41, 42). This has led some to advocate des-
ignation of categories based on mutations and genetic alterations 
(which, at its logical extreme, would place each patient into his 
own unique category), even as the difficulties of such an approach 
are increasingly becoming evident (43). As we currently stand, 
without a clear intellectual underpinning of the origins of breast 
tumors, a consensus has yet to emerge regarding how many types 
of breast cancers there are, or should be, and how they should be 
appropriately lumped or split.

While -omics approaches have tremendous molecular resolu-
tion, at the anatomic level, they are hindered by several limitations  
(21, 22). To begin, -omics approaches have low morphologic reso-
lution. In most cases, RNA/DNA is isolated from mm3–cm3 tissue 
fragments containing tumor cells with heterogeneous molecular 
characteristics, admixed with various normal epithelial, stromal, 
vascular, and inflammatory cells. An additional concern is the 
self-referential nature of many such tumor datasets, as they are 
predominantly focused on comparing tumors among each other, 
not against normal cell counterparts. Finally, although cataloging  
mutations remains an excellent method by which to identify 

Figure 6
Normal cell subtype-based classification 
identifies breast cancers with different out-
comes. (A) Distribution of ER+, HER2+ and 
TNBC cases from the full panel of NHS 
cases analyzed in this study. (B) Reclassi-
fication of ER+, HER2+, and TNBC human 
breast tumors from the full panel of NHS 
cases analyzed in this study as HR3 
(ER+AR+VDR+), HR2 (ER+AR+, AR+VDR+, 
or ER+VDR+), HR1 (ER+, VDR+, or AR+), 
and HR0 (ER–AR–VDR–). Breast tumors 
were divided into the 4 HR0–HR3 catego-
ries based on normal tissue differentiation 
(see Supplemental Table 3). (C) Kaplan-
Meier analysis for overall survival of all 
individuals with invasive breast cancer 
from the NHS, scored by IHC. (D) Kaplan-
Meier analysis of relapse-free survival 
for all invasive breast cancers from an 
855-patient breast tumor dataset (38). 
Tumors were ranked according to gene 
expression values for ER, AR, and VDR, 
scored as high or low based on a 50% 
cutoff point, and assembled based on HR 
status (HR0, n = 141; HR1, n = 287; HR2, 
n = 284; HR3, n = 143). 
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Genotype, cell of origin, and tumor phenotype. The outcome differences 
of tumors that arise from the same organ can be associated with 
genetic differences, presenting an attractive paradigm by which to 
guide the design of personalized cancer therapeutics (45).

An emerging and complementary hypothesis is that phenotypic 
differences among distinct subtypes of tumors arising in a single 
tissue may also be imposed by cell-autonomous factors unique 
to the cell of origin (16, 17, 46). For example, we previously dem-
onstrated that while some normal cell types gave rise to highly 
tumorigenic and metastatic adenocarcinomas, other breast cell 
types that were isolated from the same patient and transformed 
with identical oncogenes gave rise to cells that were morphologi-
cally distinct, weakly tumorigenic, and nonmetastatic (16, 47–49). 
Others have also suggested that the same oncogenes can have 
vastly different phenotypic consequences depending on the cell 
of origin (50, 51).

In light of these observations, we contemplate whether the better 
outcome of HR+ breast tumors may be due to their cell of origin 
and differentiation lineage. As mutations or amplifications of ER, 
AR, or VDR genes are very rare in breast cancer, it is likely that HR+ 
tumors have high HR expression because they either arose in an 
already HR+ normal cell, or they arose in a HR– precursor that was 
preordained to differentiate into a HR+ phenotype.

Ontological taxonomy of tumors. In summary, the use of in situ 
stains and normal cells as a reference point for classifying tumors 
solves several of the issues that were raised for -omics approaches: 
(a) tissue architecture is preserved, (b) morphologic resolution is 
high, (c) normal cells provide an unchanging gold-standard refer-
ence, and (d) phenotypic similarity between normal and tumor 
cells is maintained. In addition, using normal cell subtypes as a 
reference point in tumor classification addresses the question 
of lumping versus splitting. Each normal tissue is designed for 
a specific function, and each cell subtype is designed to perform 
different components of this function. Since these functions are 
finite, the maximum number of biologically important normal 
cell types is limited, unchanging, and able to be precisely defined. 
Thus, this method constrains the arbitrary splitting of tumors 
into endless subclasses. This ontological approach provides a 
durable infrastructure and context within which molecular data 
may be appropriately placed in the right cellular context and 
accurately interpreted.

At first, the molecular heterogeneity of breast cancer appears dif-
ficult to reconcile with the robust phenotypic subtypes we observed. 
However, it is the signaling pathways, not the individual genes, that 
are responsible for the phenotypes of tumors (43). Thus, a deeper 
pathway-based understanding will be necessary to correlate the cell 
type–based subtypes and molecular heterogeneity of breast tumors.

We perceive the cell type–based ontological and high-throughput 
molecular -omics approaches as complimentary methods. Current 
in situ examination methods, such as IF and IHC, have several 
shortcomings: they are low-throughput and semiquantitative and 
do not allow examination of thousands of proteins simultaneously. 
As mentioned above, the high-throughput molecular approaches 
have low morphologic resolution. An ideal approach in the future 
should combine the subcellular resolution of immunostains with 
the power of high-content, multigene molecular approaches for 
studying tumors. We believe that such molecular imaging technol-
ogies represent the next frontier in cancer research, and the mul-
tiplex IF technique used herein is just one example of how such 
technologies may advance our understanding of cancer.

genomic differences between tumors, it is ill-suited for finding 
similarities between tumors and normal tissues (10, 22, 41, 42). 
These shortcomings result in a loss of spatial, architectural, and 
tumor lineage information.

An alternative method of classifying tumors is an ontological 
approach, which focuses on defining tumor subtypes based on 
their similarities with specific normal cell origin subtype, akin to 
evolutionary biology, in which subspecies are identified based on 
the degree of similarities to common ancestors. Immunostains  
are currently the most powerful means by which to define simi-
larities between tumors and specific normal cell types, and they 
resolve many of the issues raised regarding the -omics approaches.  
As in situ methods preserve tissue architecture, they provide high 
morphologic resolution at the subcellular level. Additionally,  
the normal cells provide an unchanging gold-standard internal 
control and provide a means to describe similarities between 
normal and tumor cells that is simply not possible using muta-
tional analysis. Lastly, one of the most important differences 
between the unsupervised clustering (-omics) and the normal 
cell type–based (ontological) tumor classification methods 
is that the latter is hypothesis based, which can be tested and 
refuted or confirmed.

All of the markers used in this study have been examined previ-
ously by other investigators individually. However, to our knowl-
edge, this is the first time they have been examined all together 
within the framework of a comprehensive taxonomic assessment 
and, moreover, evaluated within the same tissue sections. The lat-
ter was made possible by use of the novel matrix IF technology that 
was recently developed.

It is important to note that this is just the beginning of efforts 
to identify markers that define the cells comprising the luminal 
layer of the breast epithelium. It took several decades to accurately 
describe all the relevant cell types in the hematopoietic system, 
with the aid of an ever-increasing number of cell type–specific 
markers. Likewise, in the case of human breast, additional mark-
ers will undoubtedly refine and expand the classification system 
we propose here.

Our results indicate that the composition of normal breast 
epithelium is much more complex than previously appreciated. 
While one might ponder the need for 11 cellular subtypes within 
the normal breast luminal epithelium, it is well worth consider-
ing the evolutionary importance of mammary gland development. 
This seminal event required emergence of a diverse range of cell 
types that together produce milk, an extremely complex substance 
essential for the survival of all mammals.

Potential diagnostic, prognostic, and treatment implications. Admit-
tedly, the HR0–HR3 categories describe only one aspect of a dis-
ease as complex as breast cancer, and we do not propose using 
this classification alone or in place of existing approaches. Rather, 
we imagine that the HR0–HR3 categories can be used to refine 
the ER+, HER2+, and TNBC classification presently in use. In the 
future, this approach can be improved by more detailed descrip-
tions of normal cell types in human breast and by incorporating 
this information into clinical evaluation along with integrated 
molecular genetic approaches.

Nevertheless, even at this early stage, we believe this cell-based clas-
sification approach has produced some actionable insights. One of 
the most intriguing implications of our work is the possibility of 
expanding the patient population being treated with hormone ther-
apy, by targeting AR and VDR in conjunction with ER (44).
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Brigham and Women’s Hospital (BWH) in accordance with the regulations 
for excess tissue use stipulated by the BWH IRB. For TMAs used in this 
study, see Supplemental Methods.

High-resolution images. High-resolution files corresponding to all image 
panels in Figures 1–3, Supplemental Figures 1–3 and 5, and Supplemental 
Table 2 are available at http://sylvester.org/ince.
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Methods
Cell culture. For cell propagation and studying effects of ER and VDR mod-
ulators on cell proliferation, see Supplemental Methods.

IHC, IF, and NHS analysis. The NHS is a prospective cohort study initi-
ated in 1976 (52). For antibodies and conditions of FFPE section staining, 
see Supplemental Table 1. For image acquisition and processing; sample 
scoring and data display in heat maps; and study design, population, and 
analysis, see Supplemental Methods. 

Multiplex IF. For antibodies and conditions of FFPE section staining, see 
Supplemental Table 1. For sequential quenching of fluorescence signal, data 
acquisition, and multiplex IF image analysis, see Supplemental Methods.

Gene expression analysis and cell lines. For analysis of mRNA expression pro-
filing data of cancer cell lines (39), see Supplemental Methods.

Cell proliferation assays. For analysis of cell line proliferation responses to 
calcitriol, taxol, ICI182,780, and R1881, see Supplemental Methods.

Statistics. Event outcomes were compared using Kaplan-Meier analysis, 
and P values were determined with the log-rank test. Tumor expression of 
myoepithelial and luminal genes (26–28) were explored in frozen robust 
multiarray analysis–normalized (53) gene expression data (GEO acces-
sion nos. GSE3744, GSE4922, GSE6532, and GSE7390) using hierarchical 
cluster analysis (Pearson r, average linkage) using the Bioconductor pack-
age MADE4 (54). Global test, available from the Bioconductor package 
globaltest (55), was used to assess the association between gene expres-
sion and luminal or myoepithelial classification. Tumors were classified 
as basal-like or non-basal-like as previously described (56), except where 
basal-like subtype classification was provided by the authors (29). Global 
test (55) was used to determine association between individual genes and 
basal-like/non-basal-like division. A P value less than 0.05 was considered 
significant. For statistical methods for NHS protein expression and out-
come data analysis, UNC mRNA expression and outcome data analysis, 
and additional details, see Supplemental Methods. 

Study approval. FFPE blocks from surgical resection specimens of nor-
mal breast tissue and of breast tumors were obtained from the archives of 
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