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Introduction
Most clinical trials of HIV prevention have aimed at preventing HIV 
acquisition by topical or systemic administration of preventative 
antiretroviral drugs to uninfected individuals (1–10). Results from 
these clinical trials have shown either partial or no protection. The 
basis for these discordant results are not yet clear and have been 
postulated to be due to a combination of a lack of adherence and 
inadequate drug levels at the site of exposure (5, 7, 11). In contrast, 
the HIV prevention trials network study 052 (HPTN 052) demon-
strated 93% protection against secondary heterosexual transmis-
sion when infected individuals received early antiretroviral therapy 
(ART) (12). Importantly, no linked partner infections were observed 
when the HIV-infected participant was stably suppressed by ART. 
The prevailing hypothesis for the success of HPTN 052 is that ART 
reduces genital cell–free and/or genital cell–associated HIV to levels 
that are too low to support HIV transmission (12). This hypothesis 
is supported by observational studies suggesting a strong correla-
tion between plasma/genital HIV-RNA levels and risk of hetero-
sexual transmission (13, 14); it is also supported by the ability of 
ART to decrease the genital levels of HIV in both men and women 
(15–17). There is very limited data in the literature to determine 
whether transmission occurs from cell-free virus only or if produc-

tively infected cells themselves can transmit HIV in the absence of  
cell-free virions (18).

In order to better understand the ability of ART to prevent sec-
ondary transmission of HIV, we used a small animal model of HIV 
infection to further characterize key virological and immunological 
events that occur in the female reproductive tract (FRT) during ART. 
We designed the following experiments using BM/liver/thymus  
humanized mice (BLT mice). First, we performed a detailed and 
comprehensive phenotypic characterization of the human lym-
phocyte subsets present in the FRT and cervicovaginal secretions 
(CVS). Next, we analyzed HIV levels and cellular dynamics in CVS 
during HIV infection. Finally, we evaluated virological suppression 
and cellular dynamics in the FRT and CVS during ART. We provide 
data demonstrating that HIV replication occurs in CVS soon after 
exposure and continues during the course of infection. This is fol-
lowed by an increase of CD4+ T cells in CVS, providing additional 
target cells for infection. This CD4+ T cell increase is followed by 
a delayed increase of CD8+ T cells in CVS. Surprisingly, despite 
the strong suppressive effect of ART on the viral load in CVS, HIV-
RNA+ cells were still present in both the FRT and CVS. However, 
when analyzed ex vivo, cells isolated from the FRT and CVS of 
ART-suppressed BLT mice did not transmit HIV in a coculture 
assay. Thus, our results provide in vivo evidence supporting the 
hypothesis behind the success of HPTN 052 (12) for limiting sexual 
transmission from HIV-infected women.

Results
Reconstitution of the FRT of BLT mice with human CD4+ cells. BLT 
mice were prepared as previously described (19–23) and were 
well reconstituted with human hematopoietic cells (CD45+) in 
peripheral blood (PB) (median 70%, range 22–95, interquartile 
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majority of human T cells in CVS had a CM phenotype (CD4+ and 
CD8+ T cells: CM vs. naive, P < 0.0001, and CM vs. EM, P < 0.0001). 
Also notable were significantly higher levels of CD4+ EM T cells 
(CD45RA–CD27–) in CVS and the FRT compared with PB (Figure 2D) 
(EM cells in FRT vs. PB, P = 0.022 and CVS vs. PB, P < 0.0001) and 
of CD8+ EM T cells in CVS compared with PB (P < 0.0001) (Figure 
2E). Increasing evidence suggests that CD4+ T cells expressing the 
integrin α4β7 heterodimer (a mucosal homing receptor) are espe-
cially susceptible to HIV infection and may play a central role in the 
earliest steps of transmission (35, 36). Therefore, we investigated the 
expression of α4β7 on memory CD4+ T cells in PB of humans and PB, 
FRT, and CVS of BLT mice. The percentage of memory CD4+ T cells 
in PB expressing α4β7 was similar in humans and BLT mice (Supple-
mental Figure 3). Furthermore, memory CD4+ T cell expression of 
α4β7 in the FRT and CVS of BLT mice was significantly lower than in 
PB (PB vs. FRT, P = 0.003, and PB vs. CVS, P < 0.0001) (Supplemen-
tal Figure 3), which is similar to what is observed in women, where 
fewer FRT memory CD4+ T cells express α4β7 when compared with 
PB (32). We also observed no difference in CD4+ memory T cell 
α4β7 expression between the FRT and CVS of BLT mice (P = 0.13) 
(Supplemental Figure 3). In summary, the majority of lymphocytes 
in the FRT and CVS of BLT mice were memory T cells expressing 
CCR5, which is remarkably similar to what is observed in the FRT of 
humans (32, 33, 37).

HIV and HIV-infected cells are present in the FRT and CVS of 
BLT mice. We established that HIV-infected cells are present 
in the FRT of HIV-infected BLT mice by analyzing different 
regions of the FRT from a BLT mouse infected vaginally with 
HIV-1JR-CSF, a well-characterized T cell tropic isolate that utilizes 
CCR5 as a coreceptor for entry (ref. 38 and Figure 3A). HIV-RNA 
was also readily detected in CVS from infected mice (Figure 3, 
B–D). As seen in humans, there was an overall significant posi-
tive linear correlation between the viral load in plasma and CVS 
(Spearman’s correlation coefficient = 0.55 [95% CI, 0.36–0.69, 
P < 0.001, n = 51]) (Figure 3E and refs. 31, 39–42).

HIV infection results in a dramatic reduction in the percent-
age of CD4+ T cells in the FRT and CVS. Following HIV infec-
tion, mucosal tissues like the gut undergo a rapid depletion of 
CD4+ T cells (43), and this hallmark of HIV infection is faith-
fully recapitulated in BLT mice (20, 21). A significant decrease 
in the percentage of cervical CD4+ T cells during chronic HIV 
infection in women has also been observed (31–33, 37, 44). In 
order to investigate these phenomena in the FRT and CVS of 
BLT mice, we analyzed CD4+ T cell levels longitudinally after 
HIV vaginal exposure. Prior to HIV infection, the levels of CD4+ 
T cells were similar in the FRT, CVS, and PB (Figure 2B and Fig-
ure 4, A–D). After vaginal infection, there was a decline in the 
levels of human CD4+ T cells in all 3 compartments (Figure 4, A 
and D). Specifically, a modest decline to approximately 70% was 
observed in the PB, whereas CD4+ T cell levels in CVS incurred a 
significantly more dramatic decrease to approximately 5% (for 
weeks 3–7, P = 0.0001–0.0042). Interestingly, the levels of CD4+ 
T cells in the FRT also declined but stabilized at about 30%, an 
intermediate level between PB and CVS (Figure 4, A and D).

HIV infection after mucosal exposure occurs by 3 main routes: 
rectal, vaginal, and oral. BLT mice are an outstanding model for 
each of these individual modes of transmission (20–23, 45–48). In 

range 56–78, n = 142). In addition, we used IHC to assess recon-
stitution and distribution of HIV target cells (human CD4+ cells, 
CD68+ myeloid/immature DC, and CD11c+ DCs) in the FRT of 
BLT mice (Figure 1 and Supplemental Figures 1 and 2; supple-
mental material available online with this article; doi:10.1172/
JCI64212DS1). Human CD4+ cells were observed throughout the 
FRT. Specifically, in the vagina, human CD4+ cells were mainly 
observed in the lamina propria, while few CD4+ cells were present 
in the epithelium. Vaginal CD4+ cells were dispersed throughout 
the lamina propria both as single cells and as focal aggregates in 
close proximity to the epithelial layer, similar to their distribu-
tion in healthy women (24, 25). Cervical CD4+ cells were present 
as single cells close to the epithelium and distributed throughout 
the lamina propria. In the uterine endometrium, CD4+ cells were 
found in the stroma both as small clusters closely adjacent to the 
epithelial layer and scattered as single cells, resembling their dis-
tribution in women (24–26). Similarly, inspection of the FRT for 
the presence of human macrophages and DCs demonstrated that, 
like in humans, these cell types are dispersed throughout the lam-
ina propria of the vagina, cervix, and uterus (refs. 24, 26–28, and 
Supplemental Figures 1 and 2). Furthermore, like in women, mac-
rophages and DCs in BLT mice were more abundant in the cervi-
cal mucosa than the vaginal mucosa (24). Together, these results 
show the efficient repopulation and adequate distribution of the 
human target cells postulated to be involved in vaginal HIV trans-
mission throughout the entire FRT of BLT mice (29).

The majority of human T cells in the FRT and CVS of BLT mice 
express a memory phenotype and the CCR5 HIV coreceptor. After 
establishing the presence and distribution of human CD4+ cells 
in the FRT of BLT mice (Figure 1), we proceeded to compare their 
cell surface phenotype to those from PB and CVS (Figure 2). CVS 
samples from BLT mice were collected, and cells were isolated 
for analysis. Cells were also isolated from the entire FRT. CVS 
and FRT samples were then analyzed for the presence of human 
CD4+ and CD8+ T cells and compared with samples obtained 
from PB (Figure 2, A and B). Our results show that, in all 3 com-
partments, the majority of human (CD45+) hematopoietic cells 
were CD4+ T cells (Figure 2, A and B) and that the level of CD4+ 
T cells in all 3 compartments was the same prior to infection with 
HIV (Figure 2B) (PB vs. FRT, P = 0.22; PB vs. CVS, P = 0.22; and 
CVS vs. FRT, P = 0.22). In addition, when compared with PB  
T cells, a significantly higher percentage of cells in the FRT and 
CVS expressed CCR5, the primary HIV coreceptor involved in 
mucosal HIV transmission (ref. 30 and Figure 2C) (CD4+ T cells: 
FRT vs. PB, P = 0.01, and CVS vs. PB, P < 0.0001; CD8+ T cells: 
FRT vs. PB, P = 0.01, and CVS vs. PB, P < 0.0001). This is consis-
tent with what has been observed in women and with the prefer-
ential mucosal transmission of CCR5-tropic HIV (31, 32).

To confirm that cells in the FRT of BLT mice have a similar 
memory phenotype as in women (24, 33, 34), we characterized the 
naive-memory phenotype of T cell subsets in PB, the FRT, and CVS 
(naive: CD45RA+CD27+; central memory (CM): CD45RA–CD27+; 
effector memory (EM): CD45RA–CD27–)(Figure 2, D and E). The 
majority of CD4+ and CD8+ human T cells in PB of BLT mice had 
a naive phenotype (CD45RA+CD27+) (CD4+ T cells: naive vs. CM,  
P < 0.0001, and naive vs. EM, P < 0.0001; CD8+ T cells: naive vs. 
CM, P < 0.0001, and naive vs. EM, P < 0.0001). In contrast, the 
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in humans and BLT mice results in a dramatic decrease in the lev-
els of CD4+ T cells in the FRT and CVS that is not reflected in PB. 
In previous studies, no determination was made about whether 
the observed decrease in CD4+ T cells in the FRT was due to a 
reduction in the number of CD4+ T cells and/or an increase in the 
number of CD8+ T cells (33, 49, 50). To address this important 
question, we performed a longitudinal analysis of CD4+ and CD8+ 
T cell numbers in CVS following HIV infection. Regardless of the 
route of exposure (vaginal, rectal, or oral) or type of inoculum, we 
observed significant increases in the numbers of both CD4+ and 
CD8+ T cells in CVS, albeit with different kinetics (Figure 5, A–C). 
Specifically, the increase in CD4+ T cells occurred during weeks 
1–2 after infection and was somewhat modest (5- to 13-fold for 
each of the 3 exposure routes). In sharp contrast, the increase in 
the number of CD8+ T cells occurred later at weeks 2–7 and was 
much greater (231-, 218-, and 56-fold after vaginal, oral, and rec-
tal infections, respectively). These results demonstrate that the 
reduction in the percentages of CD4+ T cells observed in CVS of 

order to understand the cellular dynamics that occur in the FRT 
after local versus distal HIV infection, we evaluated all 3 modes 
of mucosal HIV acquisition following exposure to cell-free and/or 
cell-associated HIV (Supplemental Table 1). Specifically, to com-
plement the data presented above obtained after vaginal exposure, 
we analyzed the levels of human CD4+ T cells in PB, FRT, and CVS 
following rectal and oral HIV exposures (Figure 4, B–D). Longitudi-
nal analysis demonstrated a decrease in the percentage of CD4+ T 
cells in the FRT and CVS following rectal and oral infection (Figure 
4, B–D). Moreover, as in the case of vaginal infection, there was a 
significant decrease in the levels of CD4+ T cells in CVS when com-
pared with PB (rectal infection weeks 2–9, P = 0.049–0.002; oral 
infection weeks 1–6, P = 0.0016–0.0001). Regardless of the route 
of infection (vaginal, rectal, or oral) or type of inoculum (cell-free 
or cell-associated virus), there was a greater decrease in the levels 
of CD4+ T cells in the FRT and CVS in comparison to PB.

HIV infection results in increased numbers of human CD4+ and 
CD8+ T cells in CVS of BLT mice. As indicated above, HIV infection 

Figure 1. Human CD4+ T cells are present throughout the FRT of BLT mice. Immunohistochemical analysis of the entire FRT of a HIV– BLT mouse demon-
strates the presence of CD4+ cells in the vagina, cervix, and uterus. CD4+ cells are stained brown. Scale bars: 100 μm.
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decrease in the percentage of CD4+ T cells in CVS described above 
and the less pronounced decrease observed in PB. During ART, 
there was a dramatic increase in the percentage of CD4+ T cells in 
CVS and an increase in the percentage of CD4+ T cells in PB (Fig-
ure 6B). These findings are in agreement with the fact that HIV+ 
women on ART have a significantly higher percentage of cervical 
CD4+ T cells than infected women not receiving treatment (57). 
In addition — as indicated above — prior to treatment, there was 
a dramatic increase in total CD8+ T cells in CVS (Figure 6C). How-
ever, in response to ART, there was a rapid and substantial decrease 
in the numbers of CD8+ T cells in this compartment. In contrast, 
while the numbers of CD8+ cells decreased, the numbers of CD4+ 
T cells increased, resulting in the eventual return to near-normal 
levels (Figure 6C). These results reveal that the observed increase 
in the percentage of CD4+ T cell in CVS during ART (Figure 6B) was 
caused by a concurrent decrease in the numbers of CD8+ T cells 
and an increase in the numbers of CD4+ T cells.

HIV-infected BLT mice (Figure 4) was the result of a significant 
increase in the levels of CD8+ T cells present in the CVS.

ART efficiently suppresses HIV in CVS and restores CD4+ and 
CD8+ T cell numbers. In order to examine the effect of ART on 
HIV levels and CD4+ and CD8+ T cell numbers in CVS, we treated 
infected mice with an ART regimen that consisted of TDF, emtric-
itabine (FTC), and raltegravir (RAL). This triple-drug combination 
has been shown to strongly suppress viral load in both humans and 
BLT mice with continuous dosing (51–53). However, ART discon-
tinuation in patients results in a rapid rebound of plasma viremia 
as well as a loss of PB CD4+ T cells (54, 55). These phenomena are 
also fully recapitulated in BLT mice (53, 56). In BLT mice infected 
vaginally with cell-associated virus (Supplemental Table 1), ART 
administration resulted in a dramatic and sustained decrease in 
viral load in both plasma and CVS as early as 2 weeks after ART 
initiation (Figure 6A). Analysis of CD4+ T cells in PB and CVS from 
these mice prior to ART demonstrated the characteristic steep 

Figure 2. Human memory T cells expressing CCR5 are the main human hematopoietic cell population in CVS and the FRT of BLT mice. (A) Flow cytomet-
ric analyses of cells from the PB, FRT, and CVS of a representative HIV– BLT mouse demonstrate reconstitution with human CD4+ and CD8+ T cells in each 
compartment. (B and C) Further characterization of T cells in PB (dots), the FRT (diagonal stripes), and CVS (solid color). Box plot showing the percentages 
of CD4+ (blue) and CD8+ T cells (red) in PB (n = 60), the FRT (n = 6), and CVS (n = 57) of HIV– BLT mice. The middle line of the box plot is the median; box 
extends from the 25th to the 75th percentiles, and error bars extend down to the lowest value and up to the highest value (B). CD4+ and CD8+ T cells in PB 
(n = 9), the FRT (n = 4), and CVS (n = 46, CD4+ T cells; n = 37, CD8+ T cells) were analyzed for CCR5 expression with flow cytometry (C). (D and E) Bars rep-
resent mean values (± SEM). Further flow cytometric analyses characterizing the CD4+ (D) and CD8+ (E) T cell subsets. Naive T cells (CD45RA+CD27+), green; 
CM T cells (CD45RA–CD27+), pink; and EM T cells (CD45RA–CD27–), purple. Bars represent mean values for PB (n = 26), the FRT (n = 4), and CVS (n = 60, CD4+ 
T cells; n = 41, CD8+ T cells). Data represented as mean ± SEM. A Mann-Whitney U test with a Holm-Bonferroni step-down correction was used to compare 
the frequencies of immune cell populations within and between the PB, FRT, and CVS of BLT mice (*P < 0.05, **P < 0.01, ****P < 0.0001) (C–E).
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cells constitute an important source of infectious virus, we estab-
lished a sensitive coculture assay to measure the number of infec-
tious cells in PB, CVS, and the FRT of infected mice receiving ART 
(Figure 7, C and D). Our results showed (i) that infectious cells were 
readily detected in PB, CVS, and the FRT of infected BLT mice; (ii) 
that ART suppresses the number of infectious cells in each of these 
3 compartments; and (iii) that this reduction was statistically sig-
nificant (P = 0.04) (Figure 7D). Thus, our results demonstrate that 
ART efficiently suppresses levels of cell-free HIV and infectious 
cells in PB, CVS, and the FRT. Most importantly, we then deter-
mined if ART suppresses the number of HIV-RNA+ cells in the PB, 
CVS, and FRT of BLT mice to levels below those needed to prevent 
secondary mucosal HIV transmission. We assessed the ability of 
HIV-infected cells to establish infection in vivo by vaginally expos-
ing BLT mice to 2 different doses of HIV-infected PB mononuclear 
cells (PBMCs) and monitoring their plasma level of HIV-RNA for 

We next determined if ART suppression of cell-free HIV-RNA 
levels observed in plasma and CVS (Figure 7A) parallels a similar 
decrease in the levels of cell-associated HIV in PB, CVS, and the 
FRT. For this purpose, we isolated cells from PB, FRT, and CVS 
and analyzed their levels of cell-associated HIV-RNA (Figure 7B). 
Our results show that ART significantly decreased the amount of 
cell-associated HIV-RNA in all 3 compartments (PB ART vs. No 
ART, P = 0.0009; FRT ART vs. No ART, P = 0.0002; and CVS ART 
vs. No ART, P = 0.015) (Figure 7B). However, cell-associated HIV-
RNA remained readily detectable in the FRT and/or CVS of the 
majority of mice undergoing ART. Therefore, despite the strong 
reduction in the levels of cell-free HIV-RNA in mice receiving 
ART, our analysis reveals an important dichotomy between the 
suppression of cell-free HIV-RNA levels observed in CVS and the 
continued presence of residual levels of cell-associated HIV-RNA 
in the FRT/CVS. To determine whether these residual HIV-RNA+ 

Figure 3. HIV is present in the FRT and CVS of infected BLT mice, and the kinetics of HIV-RNA in CVS is similar to the kinetics of HIV-RNA in 
PB plasma. (A) Immunohistochemical analysis of the FRT (vagina, cervix, and uterus) from one vaginally HIV-infected BLT mouse (3 weeks after 
exposure). HIV p24 gag–positive cells are stained brown. Scale bars: 100 μm. (B–D) HIV-RNA was detected in the plasma (black solid line, filled 
circles), and CVS supernatant (black dashed line, open circles) following vaginal (B) (n = 21), rectal (C) (n = 16), and oral (D) (n = 14) exposure. (E) 
Comparison of the viral load in plasma and CVS supernatant of all routes combined (mice infected vaginally, rectally, and orally combined; n = 51). 
The assay limit of detection is indicated with a dashed gray line. (B–E) Data represented as mean ± SEM. Associations between plasma and CVS 
supernatant viral loads were estimated with Spearman’s correlation coefficient.
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8 weeks. As shown in Figure 7E, all BLT mice exposed to 5,000 
HIV-infected PBMCs remained negative for HIV-RNA. However, 
50% of mice exposed to 10,000 HIV-infected cells became pos-
itive for plasma HIV-RNA. Our results revealed that the number 
of HIV-RNA+ cells in all 3 compartments analyzed from ART- 
suppressed BLT mice is well below what is needed to establish 
vaginal HIV transmission in this model.

Discussion
In this manuscript, we provide data demonstrating (i) that 
regardless of the route of infection (vaginal, rectal, or oral) and 
whether the inoculum is cell-free or cell-associated HIV, local 
viral replication occurs in the FRT and CVS during acute HIV 
infection, the time when secondary transmission is most likely to 
occur (Figure 3); (ii) that this is followed by a transient increase 
in CD4+ T cell levels in CVS that can serve to provide additional 
target cells to sustain or promote infection (Figure 5); and (iii) 
that this is itself followed by a somewhat delayed increase in 
CD8+ T cell levels in CVS (Figure 5). In addition, our study pro-
vides in vivo evidence supporting the hypothesis behind the suc-
cess of HPTN 052 (12): that initiating ART can reduce the risk 
of secondary HIV transmission by efficiently suppressing HIV 
levels in the genital tract (Figures 6 and 7).

Interestingly, our results also highlighted a potentially impor-
tant dichotomy between the levels of cell-free virus and cell- 
associated HIV-RNA in the FRT and CVS of ART-suppressed 
mice. Specifically, in animals with undetectable cell-free HIV-
RNA in plasma and CVS, significant levels of HIV-infected cells 

producing viral RNA remain in the FRT and CVS of some ART-
treated mice (Figure 7). The presence of cell-associated HIV-RNA 
has been demonstrated in other secretions of ART-suppressed 
women. Valea et al. demonstrated the presence of cell-associated 
HIV-RNA in breast milk obtained from ART-treated mothers with 
undetectable levels of cell-free HIV-RNA in plasma and breast 
milk (58). These results are in agreement with our observations in 
BLT mice demonstrating that cell-associated HIV-RNA can per-
sist in mucosal secretions despite ART. Collectively, our results 
and those of Valea et al. may have important implications for 
the design of effective HIV prevention and curative approaches. 
In the future, it will be important to determine if cell-associated 
HIV-RNA persists in other mucosal secretions and tissues despite 
suppression of cell-free HIV-RNA.

Worldwide, the majority of new HIV infections occur after 
heterosexual exposure (59). In vaginally exposed women, the 
primary ports of HIV entry are the mucosal surfaces of the 
vagina, cervix, and uterus (60–62). The identity and the location 
of the initial cells involved in HIV-1 transmission are a subject 
of great debate (29). The DC–T cell milieu is a highly permis-
sive site for virus growth, and DCs likely contribute to driving 
the productive infection in CD4+ T cells (63–67). Hence, both 
intraepithelial Langerhans cells and DCs have potential impor-
tant roles in vaginal HIV transmission (65–69). However, the 
mucosa of the human FRT contains an abundance of CD4+  
T cells (24, 25, 34, 68), and experiments in both NHPs (non-
human primates) and human explant models suggest that the 
first productively infected cells are likely T cells (61, 68, 70–73). 

Figure 4. After vaginal, rectal, or oral HIV infection, there is a decrease in the percentage of CD4+ T cells in CVS and the FRT. (A–C) The percentage 
of CD4+ T cells in PB (filled diamond, solid line) and CVS (open triangle, dashed line) was measured in HIV– (n = 28) and vaginally (A) (n = 18), rectally 
(B) (n = 11), or orally (C) (n = 12) infected BLT mice. Data is shown as mean ± SEM. A Mann-Whitney U test was used to compare CD4+ T cell levels 
between the PB and CVS (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (D) Additional analysis of the percentage of CD4+ T cells in the FRT 
was performed in HIV– BLT mice (n = 7); vaginally infected BLT mice (filled circle) at weeks 1 (n = 1), 3 (n = 1), 5 (n = 1), and 7 (n = 1); rectally infected 
mice (asterisk) at weeks 6 (n = 2) and 10 (n = 1); and an orally infected mouse (filled square) at week 8 (n = 1) after exposure.
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Regardless, each of the most relevant human HIV target cells 
(CD4+ T cells, macrophages, and DCs) are present throughout 
the entire FRT of BLT mice (Figure 1, Supplemental Figures 1 and 
2, and ref. 21). Reconstitution of the FRT of BLT mice with the 
appropriate human hematopoietic cells renders BLT mice sus-
ceptible to vaginal HIV transmission (21). The susceptibility of 
BLT mice to vaginal HIV infection has allowed this model to be 
used to evaluate novel approaches of HIV prevention (21, 23, 74).

In this manuscript, we utilized BLT mice to elucidate and study 
critical events occurring in the FRT and CVS during HIV infection. 
Specifically, by performing comprehensive analyses of the T cell 
subsets present in the FRT and CVS, we have gained insight into 
the human immune cell populations in this organ. Consistent with 
observations made in healthy women, the majority of the human 
lymphocytes present in both the FRT and CVS of BLT mice are 
memory T cells (Figure 2D and refs. 31, 32). Also, consistent with 
the preferential vaginal transmission of CCR5-tropic viruses, a high 
percentage of CD4+ T cells present in the FRT and CVS express 
CCR5 (Figure 2C and refs. 31, 32). Furthermore, consistent with 
humans, a significant number of the memory CD4+ T cells present 
in the FRT and CVS of BLT mice expressed α4β7 (Supplemental 
Figure 3). The similarities between the phenotypes of hematopoietic 
cells present in the FRT of humans and BLT mice emphasize the 
utility of BLT mice as an in vivo model for the study of events occur-
ring at the site where HIV exposure occurs.

Our results demonstrating parallel reductions in the per-
centage of CD4+ T cells in the FRT and CVS of BLT mice indicate 
that the cell populations are closely linked throughout the course 
of infection (Figure 4). These striking similarities between the 
dynamics of T cells present in CVS and the FRT after HIV infec-
tion suggest that cells from CVS could be potentially used as a sur-
rogate for monitoring some of the changes that occur in the FRT. 
Thus, these results may have significant implications that could 
facilitate and simplify future studies of transmission and preven-
tion in both humans and in NHP models by minimizing the need 
to harvest or biopsy the FRT.

In order to study the dynamics of human CD4+ and CD8+ T 
cells and viral replication that occur in the FRT after vaginal HIV 
infection, we vaginally exposed BLT mice to HIV. Our results 
demonstrate an increase of CD4+ T cells in CVS during the first 

2 weeks after infection (Figure 5A), providing additional HIV 
target cells to sustain and potentially spread the initial infection. 
These results are consistent with HIV-RNA being present in CVS 
within 1 week after exposure (Figure 3B), suggesting that local 
HIV replication occurs in the FRT and/or CVS followed by the 
establishment of systemic infection in all mice by 2 weeks after 
exposure (Figure 3B). Especially noteworthy is the timing of viral 
shedding into CVS after vaginal exposure, which is characterized 
by an early peak in viremia followed by a gradual decline (Fig-
ure 3B) that mimics the HIV genital shedding profile observed 
in CVS of women during acute HIV infection (39). Notably, we 
also observed an increase in CD8+ T cells in CVS after vaginal 
infection (Figure 5A). However, in contrast to the increase of 
CD4+ cells occurring within one to 2 weeks after exposure, the 
increase of CD8+ T cells was first detected 2 weeks after exposure 
and did not peak until week 5–7 (Figure 5A). These results are 
consistent with reports from vaginal-infection studies in NHPs 
demonstrating that initial SIV infection takes place in a few CD4+ 
T cells, resulting in local inflammation and recruitment of addi-
tional CD4+ T cells (61, 72, 75). Clusters of SIV-infected cells are 
present within inflammatory infiltrates, which increase in size 
during days 4–10 after exposure (61, 72, 75). In addition, geni-
tal CD8+ T cell influx was detected 2–3 weeks after vaginal SIV 
infection of NHPs, a time by which all animals had become sys-
temically infected (72, 76). Thus, the timing of CD4+ and CD8+ 
T cell increase in CVS, as well as the timing of local viral replica-
tion and systemic infection that we have observed in BLT mice, 
is strikingly similar to NHPs. Together, these results support the 
hypothesis that the increase of CD8+ T cells in the CVS/FRT is 
delayed after exposure, potentially preventing effective suppres-
sion of HIV replication at early stages after exposure (75, 76).

We next investigated the effect of ART on HIV levels in CVS of 
BLT mice. Consistent with results obtained in humans, ART treat-
ment of infected BLT mice resulted in a significant decrease in the 
levels of HIV in both PB and CVS (15, 16). However, our finding 
showing the absence of cell-free HIV in CVS during ART, concurrent 
with the continued presence of infected cells producing HIV-RNA, 
could have important implications for HIV prevention and eradica-
tion strategies. Consistent with the lack of transmission observed 
in heterosexual couples where the infected partner is undergoing 

Figure 5. After vaginal, rectal, or oral HIV infection, there is an increase of CD8+ and CD4+ T cells in CVS. (A–C) The CD8+ (filled upward triangle, dashed 
red line) and CD4+ T cell numbers (filled downward triangle, blue dashed line) in CVS were measured in HIV– (n = 28) and vaginally (A) (n = 18), rectally (B) 
(n = 11), or orally (C) (n = 4) infected BLT mice. Data presented as mean ± SEM. Statistical analysis represents comparisons of the weeks indicated vs. the 
numbers of CD4+ or CD8+ T cells in naive mice. A Mann-Whitney U test was used to compare the numbers of CD4+ and CD8+ T cells in the CVS of naive and 
HIV-infected BLT mice (**P < 0.01, ***P < 0.001, ****P < 0.0001).
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mice, fixed in 4% paraformaldehyde overnight at 4°C, embedded 
in paraffin, cut into 5-μm sections, and mounted onto poly-l-lysine–
coated glass slides. Following paraffin removal, antigen retrieval 
(Diva Decloaker, Biocare Medical), and blocking of nonspecific  
Ig–binding sites (Background Sniper, Biocare Medical), tissue sec-
tions were stained with primary antibodies overnight at 4°C and devel-
oped with a biotin-free HRP-polymer system (MACH3 Mouse HRP- 
Polymer Detection, Biocare Medical). All tissue sections were treated 
with HRP substrate (ImmPACT DAB, Vector Laboratories) and then 
counterstained with hematoxylin. Primary antibodies specific for 
human CD4 (clone 1F6, Leica Biosystems), human CD68 (clone KP1, 
Dako), and human CD11c (clone 5D11, Leica Biosystems) were used 
to identify human cells (24, 77–81). HIV-infected cells were detected 
with an antibody directed against HIV p24 gag (clone Kal-1, Dako). 
As a control, tissue sections were stained with the following isotype 
control antibodies: mouse IgG1 (clone DAK-G01, Dako) and mouse 
IgG2a (clone DAL-G02, Dako). The stained sections were scanned 
by ScanScope CS (Aperio, Leica Biosystems) and the images were 
then analyzed by ImageScope (Aperio, Leica Biosystems).

Flow cytometric analyses
Flow cytometric analyses were performed on PB, FRT, and CVS cells. 
CVS samples were obtained by performing a cervicovaginal lavage 
with sterile PBS (3 washes of 20 μl each, ~60 μl total volume). To 
ensure that the procedure was atraumatic, cervicovaginal lavages 
were performed with 20 μl or 200 μl sterile filter pipet tips that were 
inserted no more than 3–5 mm into the vaginal cavity. Following cen-
trifugation in a microcentrifuge (300 g for 5 minutes), CVS cell-free 
supernatants were used for HIV-RNA analyses and the cell pellets 
were used for flow cytometric analyses. The CVS samples contained 
a highly variable number of total cells (due to variable cell shedding). 
Therefore, the human CD3+ T cell numbers in CVS were normalized 
to 100,000 total cells. FRTs were harvested and digested, and single 
cell suspensions were isolated as previously described (23). BLT mice 
were monitored for levels of human hematopoietic cells (CD45+) 
in PB by flow cytometry, as we have previously described (19–23). 

ART (12), our analysis showed that the residual levels of HIV-RNA+ 
cells present in mice receiving ART were too low to transmit HIV in 
vitro. This lack of HIV transmission could have been due to too few 
infected cells for cell-to-cell transmission and/or too little cell-free 
replication–competent virus produced from the residual HIV-RNA+ 
cells for in vitro infection of target cells. The residual levels of HIV-
RNA+ cells detected in the CVS and FRT of ART-suppressed mice 
were well below the number of HIV-infected cells required for HIV 
transmission in BLT mice. The availability of a small animal model 
that so accurately recapitulates key aspects of the human condition 
represents a unique tool for the in vivo study of the intricate cel-
lular dynamics occurring during HIV infection in the FRT and to 
address critical questions in the field, such as whether cell-to-cell  
transmission contributes sexual transmission of HIV or whether 
all transmission is via cell-free, replication-competent virions. In 
addition, this model could prove helpful in the evaluation of novel 
approaches to prevent cell-free and cell-associated HIV transmission.

Methods

Generation of BLT mice
BLT mice were prepared essentially as previously described (19–23). 
Briefly, BLT mice were individually bioengineered by transplanting 
(BM transplant) human fetal liver–derived CD34+ hematopoietic 
stem cells into NOD/SCID/γc–/– mice (stock number 00557, NSG 
mice; The Jackson Laboratory) implanted with autologous human 
liver and thymus tissue (Advanced Bioscience Resources). A sand-
wich of 1- to 2-mm pieces of human thymus-liver-thymus tissue was 
implanted under the kidney capsule of 6- to 14-week-old female NSG 
mice. Mice were exposed to sublethal γ irradiation (300 cGy) 4–24 
hours prior to the transplantation of CD34+ stem cells (2.5–8 × 105 
CD34+ cells) to facilitate BM engraftment.

Immunohistochemical analyses
Immunohistochemical analyses were performed on paraffin- 
embedded FRT sections. FRTs for IHC were harvested from BLT 

Figure 6. ART suppresses HIV-RNA in the plasma and CVS, leading to a reduction in the number of CD8+ T cells and an increase of CD4+ T cells in CVS. 
Six HIV-infected BLT mice were treated with daily ART consisting of FTC, TDF, and RAL to evaluate the effect of ART on HIV-RNA levels in the plasma and 
CVS supernatant, as well as T cell levels in PB and CVS. ART was initiated in BLT mice 6–8 weeks after HIV exposure. Time point 0 corresponds to the day 
of ART initiation, and the time points corresponding to ART are shaded gray. (A) Viral load analyses of the plasma (black solid line, filled circles) and CVS 
supernatant (black dashed line, open circles). The assay limit of detection is indicated with a dashed gray line. (B) The percentage of CD4+ cells in PB (filled 
diamond, blue solid line) and CVS (open downward triangle, blue dashed line). (C) The number of CD4+ (filled downward triangle, blue dashed line) and 
CD8+ (filled upward triangle, dashed red line) T cells in CVS. Data represented as mean ± SEM.
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PerCP (SK1), CD3 PECy7 (SK7), CD45 APC (H130), CD4 APC-H7 
(RPA-T4), and CD45RA Pacific Blue (F8-11-13) or IgG1k Pacific Blue 
(MOPC-21). All antibodies were purchased from BD Biosciences, 
except for CD45RA Pacific Blue (AbD Serotec), unconjugated IgG1k 
(eBioscience), and unconjugated α4β7 (ACT-1, catalog 11718) (NIH 
AIDS Research and Reference Reagent program) (82). The unconju-
gated α4β7 (ACT-1) and isotype IgG1k antibodies were labeled with 
PE using the LYNX Rapid RPE antibody conjugation kit (AbD Sero-
tec). Gates defining CD27, CD45RA, CCR5, and α4β7 expression 
were set with isotype-matched fluorophore-conjugated antibodies. 
In Figure 2B, to account for the differential presence of NKT cells 

The antibody clones included in the flow cytometry panels that 
were used to analyze PB and cells isolated from the FRT and CVS 
of BLT mice are as follows: Panel A – CD3 FITC (HIT3a), CD4 PE 
(RPA-T4), CD8 PerCP (SK1), and CD45 APC (HI30); Panel B – CD8 
FITC (SK1), CXCR4 PE (12G5) or IgG2ακ PE (G155-178), CD4 PerCP 
(SK3), CD3 PE-Cy7 (SK7), CCR5 APC (3A9) or IgG2ακ APC (G155-
178), and CD45 APC-Cy7 (2D1); Panel C – CD45RA FITC (HI100) 
or IgG2 FITC (27-35), CD27 PE (M-T271) or IgG1κ PE (MPOC-21),  
CD8 PerCP (SK1), CD3 PE-Cy7 (SK7), CD45 APC (HI30), and 
CD4 APC-H7 (RPA-T4); Panel D – CD27 FITC (M-T271) or IgG1k 
FITC (MOPC-21), α4β7 PE (ACT-1) or IgG1k PE (P3.6.2.8.1), CD8 

Figure 7. ART suppresses cell-free HIV-RNA in CVS and PB but does not consistently suppress cell-associated HIV-RNA in the FRT and CVS. (A) Viral 
load analyses of the plasma (black solid line, filled circles) and CVS supernatant (black dashed line, open circles) demonstrated sustained viral load 
in the plasma and CVS supernatant of 8 HIV-infected ART-naive mice (left panel) and a dramatic decrease in viral load to undetectable levels in both 
plasma and CVS supernatant in 5 representative ART-treated mice (right panel). Time points corresponding to ART are shaded gray. (B) Cell-associated 
HIV-RNA in the PB, FRT, and CVS of mice receiving ART for 5–8 weeks (n = 8) and of ART-naive mice (No ART) (n = 8). RNA was isolated from mononu-
clear cells, and the RNA determination for each sample was performed in triplicate. (C) The level of infectious cells in PB and CVS from BLT mice was 
determined in 8 ART-treated mice and 5 ART-naive mice. Samples from all mice in each group (ART vs. No ART) were pooled at each time point: week –1 
(ART n = 8, No ART n = 5), week 2 (ART n = 4, No ART n = 5), and week 3 (ART n = 3, No ART n = 5). (D) The level of infectious cells in the FRT of mice 
treated with ART for 5 weeks and in ART-naive mice (ART n = 4, No ART n = 5). (B–D) Bars represent mean values. Data are represented as ± SEM. (C 
and D) Limit of detection was 2 infectious units per 1 × 106 cells. (E) BLT mice were exposed vaginally to 2 different doses of HIV-infected PBMC (open 
symbols: 5,000 PBMC, n = 4; closed symbols: 10,000 PBMC, n = 4). Plasma levels of HIV-RNA were monitored for 8 weeks. A Mann-Whitney U test was 
used to compare levels of cell-associated HIV-RNA and infectious cells between ART-naive and ART-treated mice (*P < 0.05, ***P < 0.001) (B and D). 
The assay limit of detection is indicated with a dashed gray line. 
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Replication competence of HIV in cells from the PB, CVS, or FRT of 
infected BLT mice
The replication competence of virus present in cells obtained from 
infected BLT mice was determined using a coculture assay. For this 
purpose, cells isolated from PB, CVS, or the FRT of infected ani-
mals were cocultured with TZM-bl indicator cells in the presence of 
DEAE-dextran (Sigma-Aldrich) (2 μg/ml) for 24 hours. The culture 
medium was then removed and replaced with fresh medium. Cells 
were incubated for an additional 48 hours, fixed, and stained for 
β-galactosidase activity. Individually infected cells were manually 
counted under an inverted microscope. The limit of detection was 
two infectious units per 1 × 106 cells.

Statistics
Bivariate statistical comparisons were performed using the 2-sample 
Mann-Whitney U test. The Bonferroni step-down (Holm) correction 
was used to adjust for multiple testing for sets of related hypothesis 
tests in Figure 2 and Supplemental Figure 3. Data in Figure 2 and 
Supplemental Figure 3 were analyzed as independent observations. 
Some of the PB and CVS data in Figure 2 represent multiple longitu-
dinal time points from the same animal (Figure 2, B, D, and E) and/
or paired observations (Figure 2, B–E). In addition, some of the PB 
data in Supplemental Figure 3 represent multiple longitudinal time 
points from the same animal and/or are paired with CVS and/or FRT 
data. Collectively, PB and CVS data were obtained from 30 mice for 
Figure 2B (n = 30, PB; n = 30, CVS), 20 mice for Figure 2C (n = 9, PB; 
n = 19, CVS), 29 mice for Figure 2D (n = 9, PB; n = 26, CVS), and 18 
mice for Figure 2E (n = 9, PB; n = 15, CVS). The data in Supplemental 
Figure 3 represents a total of 21 BLT mice (n = 16, PB; n = 13, CVS; and  
n = 5, FRT). Associations between viral load in plasma and CVS super-
natant were estimated with Spearman’s correlation coefficient. Cor-
relation estimates were calculated at each time point, and an average 
correlation was computed by taking a weight average of time-specific 
estimates (84). The bootstrap (85) was used to calculate CIs for the 
average correlation and to assess whether the average correlation 
was nonzero. Analyses were conducted using R version 2.13, Graph-
Pad Prism version 5.0, and SAS version 9.4. P < 0.05 were considered 
significant. Statistically significant results in figures are indicated as 
follows: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

Study approval
Mice were maintained at the Division of Laboratory Animal Medicine 
at the UNC Chapel Hill in accordance with protocols approved by the 
Institutional Animal Care and Use Committee.
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that are CD3+ but lack expression of CD4 and CD8, the percentage of 
CD4+ and CD8+ T cells in PB, CVS, and FRT was calculated by divid-
ing the number of CD3+ T cells that expressed CD4 or CD8 by the 
total number of CD3+ T cells that expressed either CD4 or CD8. Flow 
cytometric data collection and analyses were performed using a BD 
FACS Canto or Fortessa cytometer and FACSDiva software.

Exposure of BLT mice to HIV and treatment with ART
BLT mice were infected vaginally, rectally, or orally with cell-free or 
cell-associated CCR5 tropic HIV-1 essentially as previously described 
(19–23, 45, 47).

Cell-free HIV exposures. Stocks of HIV-1JR-CSF or HIV-1RHPA were 
prepared and tittered using TZM-bl cells (AIDS Research and Ref-
erence Reagent Program, Division of AIDS, National Institute of 
Allergy and Infectious Diseases) as previously described (19–23). 
BLT mice were exposed vaginally to 3 × 105–3.5 × 105 tissue cul-
ture infectious units (TCIU), rectally to 3.5 × 105–4.8 × 106 TCIU, or 
orally to 1.4 × 106 TCIU of HIV-1.

Cell-associated HIV exposures. Human PBMCs were infected in 
vitro with HIV-1JR-CSF. PBMCs were cultured in the presence of IL-2 
and PHA for 3 days and then inoculated at a MOI of 0.1 with HIV-
1JR-CSF by a 2-hour spin infection. Next, PBMCs were washed 3 times, 
resuspended in IMDM medium, and — 3–4 days after inoculation — 
the percentage of HIV-infected cells was determined by intracellu-
lar staining for p24 gag (clone KC57-FITC, Beckman-Coulter) using 
the Fix and Perm kit (Invitrogen). BLT mice were vaginally exposed 
to 1 × 105 HIV p24 gag+ PBMCs (up to 1.9 × 107 total PBMCs) or orally 
to 3.75 × 105 HIV p24 gag+ PBMCs (up to 1.6 × 107 total PBMCs). 
Vaginal exposure to cell-associated HIV was performed by admin-
istering 5,000 or 10,000 HIV-1 p24+ cells in a volume of 10 μl to 
anesthetized BLT mice. We did not observe any phenotypic differ-
ences when using HIV-1JR-CSF or HIV-1RHPA for exposures or when 
using cell-free virus versus cell-associated virus. HIV-infected BLT 
mice designated for treatment received daily ART (by i.p. injection) 
consisting of FTC (140–200 mg/kg body weight), tenofovir diso-
proxil fumarate (TDF; 146–208 mg/kg), and RAL (56–80 mg/kg), 
as we have previously described (53). ART was administered for an 
average of 5.6 weeks (range 4–8 weeks). No overt drug-associated 
toxicity was observed.

Real-time PCR for HIV-RNA
Infection of BLT mice with HIV was monitored in plasma and CVS 
supernatant by determining levels of cell-free HIV-RNA using 
one-step quantitative PCR (qPCR) (ABI custom TaqMan Assays-
by-Design) according to the manufacturer’s instructions (primers 
[5′-CATGTTTTCAGCATTATCAGAAGGA-3′ and 5′-TGCTTGAT-
GTCCCCCCACT-3′] and MGB-probe [5′FAM-CCACCCCACAA-
GATTTAAA CACCATGCTAA-Q 3′ (83)]) as previously described, 
with a limit of detection of 750 HIV-RNA copies per ml (53). The 
lower sensitivity of our standard assay compared with that of the 
standard clinical assay (50 copies per ml) is due to the lower volume 
of plasma that can be obtained routinely from mice. The levels of 
cell-associated HIV-RNA were analyzed in mononuclear cells iso-
lated from PB, FRT, and CVS. HIV-RNA was extracted from mono-
nuclear cells (RNeasy Mini Kit, QIAGEN), and a one-step qPCR 
was performed as described above. For all analyses, cell-free and 
cell-associated HIV-RNA measures were log10 transformed.
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