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Airspaces of the lung are lined by an epithelium whose cellular composition changes along the proximal-to-distal 
axis to meet local functional needs for mucociliary clearance, hydration, host defense, and gas exchange. Advances 
in cell isolation, in vitro culture techniques, and genetic manipulation of animal models have increased our under-
standing of the development and maintenance of the pulmonary epithelium. This review discusses basic cellular 
mechanisms that regulate establishment of the conducting airway and gas exchange systems as well as the functional 
maintenance of the epithelium during postnatal life.

Introduction
Lung diseases often involve complex changes in lung architec-
ture and function that may only be revealed at the time of clini-
cal presentation. Management is frequently aimed at alleviating 
symptoms and slowing the course of disease progression. This 
approach is taken with variable success and without necessar-
ily understanding the principal cause of the pathology. However, 
as interest in the underlying basis for disease has grown, it has 
become apparent that the epithelial lining of the lungs is a key 
disease mediator and target for therapeutic interventions aimed 
at either preventing disease in susceptible individuals or revers-
ing it in chronically ill patients. Here, we review the development 
of the pulmonary epithelium, its roles in normal lung function, 
and the cellular and molecular mechanisms regulating epithelial 
maintenance. This knowledge is fundamental to understanding 
the aberrant repair and subsequent remodeling commonly seen 
in lung disease pathology and to developing therapeutic strategies 
aimed at treating patients.

The functional basis for pulmonary epithelial cell 
composition and structure
The branched structure of the human airways allows for efficient 
bidirectional transfer of approximately six liters of air per minute 
between the external environment and the alveoli. Harmful con-
taminants that enter the lung include particulates, pathogenic 
microorganisms, and gaseous pollutants. Where these agents are 
deposited and subsequently interact with the epithelium of the 
lung is dependent upon their physicochemical properties and the 
flow of air through the airway (1). This, in turn, is influenced by 
a combination of airway branching, flexibility, and caliber, which 
dictates velocity and turbulence (2). The higher velocity and tur-
bulent flow of air in proximal airways creates conditions for the 
impaction of larger particulates and the “scrubbing” of water-
soluble contaminants from inspired air. Smaller particulates 
and less-water-soluble agents can, in contrast, reach deeper into 
the lung, where they encounter a much larger combined surface 
area and lower rates of air flow that favor deposition by diffusion. 
Secretions that line the airway surface trap airborne contaminants, 
which can then be removed through mucociliary transport; this 

is a physical clearance mechanism that moves airway secretions 
and adsorbed contaminants from the closed-ended distal airways 
toward the oropharynx (3). Mucociliary transport is facilitated 
by the formation of two separate layers of airway surface liquid: a 
periciliary layer of less-viscous fluid that allows for the free move-
ment of cilia and an overlying, viscous layer of mucus that serves to 
transport adsorbed particles and pathogens out of the airways (4).

Gas exchange occurs primarily across the attenuated blood-air 
barrier that is formed by the juxtaposition of alveolar type I (ATI) 
epithelial cells and microcapillary endothelial cells. The other 
specialized alveolar epithelial cell type, the ATII cell, functions in 
the biosynthesis of pulmonary surfactant, which lowers the sur-
face tension within the alveoli, allowing for respiration at normal 
transpulmonary pressures. In addition, both cell types play impor-
tant roles in fluid and ion transport (5).

The pulmonary epithelium fulfills multiple functions essential 
for tissue homeostasis (6). Different regional needs for functions 
such as host defense or gas exchange are matched by differences in 
the type and abundance of specialized epithelial cells at each loca-
tion. The properties and fate of lung epithelial cells are largely dic-
tated during development, but their phenotype and function are 
dynamic and can be influenced by changing micro- or macro-envi-
ronmental conditions. The capacity of the epithelium to adapt to 
changing environmental conditions is an important property that 
allows it to tolerate chronic stress. However, exaggerated responses  
to chronic stimuli or aberrant responses to naive stimuli may 
result in pathological remodeling, leading to changes in the bar-
rier properties of the epithelium, composition of extracellular lin-
ing fluid, and rate of mucociliary transport, all of which have the 
potential to compromise pulmonary mechanics and gas exchange.

Proximodistal patterning of the developing lung
The process of lung development in mammals has been best char-
acterized using rodent models. Gastrulation of the developing 
embryo results in the formation of the three embryonic germ lay-
ers whose interactions establish a highly stereotyped body plan. 
Formation of the anterior foregut pocket results in the establish-
ment of a primitive tube of endoderm surrounded by mesoderm 
(7). Interactions between these cell types result in the localized for-
mation of primordial buds that give rise to the thymus, lung, liver, 
and pancreas. The lungs, distal to the trachea, are derived from 
buds that form from the ventral foregut endoderm at embryonic 
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day 9.5 in the mouse or week 4 in humans (7–9). The trachea, in 
contrast, is established by division of the existing foregut lumen 
into two independent luminal structures that represent the trachea 
and esophagus (10, 11). This early stage of lung development is 
referred to as the embryonic phase, the first of five phases that were 
initially defined based upon the changing morphology of develop-
ing airways (ref. 9 and Figure 1). The morphologic changes seen 
in the embryonic phase of lung development are not cell intrinsic, 
but rather mediated by diffusible signals from surrounding mes-
enchyme (12). Early endoderm isolated from surrounding mesen-
chyme loses expression of genes that mark early cell fate decisions, 
but these markers are completely restored by coculturing endo-
derm with mesenchyme and partially rescued by the addition of 
FGF4 (12). Other diffusible signals from the surrounding mesen-
chyme that have been shown to affect early embryonic cell fate deci-
sions include members of the TGF-β/bone morphogenetic protein 
(TGF-β/BMP), Hedgehog, WNT, FGF, and EGF families (12).

As lung development progresses, embryonic endoderm under-
goes progressive fate decisions that generate epithelial progeni-
tor cells with increasingly restricted developmental potential over 
time. The earliest markers of cells that distinguish future lung 
from other derivatives of the foregut endoderm include expression 
of the transcription factor Nkx2.1 and reduced expression of the 
transcription factor Sox2 (8, 10). Much like the mesenchymal inter-
actions required by the early endoderm for early differentiation, 
patterning of the lung during the process of branching morpho-
genesis is dependent on the local paracrine microenvironments, 
which differ significantly along the proximodistal axis. Grafting 
experiments using rat embryos have demonstrated that epithe-

lium from both tracheal rudiments and distal lung tips retain the 
ability to undergo either tracheal or distal lung epithelial cell dif-
ferentiation under the influence of corresponding regional embry-
onic mesoderm (13). This demonstrates that early lung endoderm 
is multipotent and that its fate is dependent upon signals provided 
by the local microenvironment (primarily mesoderm). However, 
the capacity of proximal epithelium to undergo multipotent dif-
ferentiation was lost when early embryonic distal tip mesenchyme 
was grafted adjacent to proximal epithelium of late pseudoglan-
dular stage lungs (14). The change in epithelial differentiation 
potential during the transition from pseudoglandular to cana-
licular phases of lung development reflect the progressive lineage 
restriction that occurs with advancing gestational age.

Epithelial cells start to assume differentiated characteristics 
during the pseudoglandular period of lung development. How-
ever, the precise temporospatial pattern of this process is highly 
region and cell type-specific. Some epithelial cell types, such as 
ciliated cells and neuroendocrine cells, show a proximal-to-distal 
wave of differentiation that progresses during the phase of rapid 
airway branching. FoxJ1, a marker of ciliated cell differentiation, 
first appears in the mouse trachea and large bronchial airways as 
early as E14 yet its appearance in distal bronchioles is not appar-
ent until E15.5 or later (15). Similarly, pulmonary neuroendo-
crine cells first appear as precursor cells in proximal conducting 
airways during the early pseudoglandular period of development 
and later form at the site of airway branches in more distal con-
ducting airways (16, 17). Solitary neuroendocrine precursor cells 
become innervated by ganglion cells and expand in numbers to 
generate clusters commonly referred to as neuroepithelial bodies  

Figure 1
Lung development in both mouse and human 
progresses through five overlapping phases 
based on successive branching: embryonic, 
pseudoglandular, canalicular, saccular, and 
alveolar (9). The epithelium is initially com-
posed of multipotent progenitor cells that pro-
liferate and differentiate through development 
to yield more restricted, differentiated progeny 
that make up the developed lung epithelium. 
Signaling pathways that maintain the multipo-
tent progenitor pool are indicated. HH, hedge-
hog; RA, retinoic acid.
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(17). There is some evidence that neuroepithelial bodies play 
important roles regulating the proliferation of adjacent cells dur-
ing development and serve as a focal site of secretory cell differen-
tiation in conducting airways (15, 18–20).

Epithelial cell types that appear later in development include 
secretory cells and basal cells of conducting airways, and type 1 
and type 2 pneumocytes of the alveolar epithelium. Scgb1a1, an 
early marker of secretory cell differentiation, is induced within 
subpopulations of epithelial cells in developing airways during the 
late pseudoglandular and early canalicular phases of lung develop-
ment (ref. 21 and Figure 1). However, maturation of secretory cells 
occurs over a protracted time frame that spans the late embryonic 
and postnatal periods. Maturation of secretory cells involves the 
acquisition of the cellular machinery necessary for metabolism of 

endogenous or xenobiotic compounds and for secretion of various 
constituents into the airway lining fluid (20, 22, 23). Basal cells 
appear in proximal conducting airways during postnatal matu-
ration of the epithelium. Expression of the transcription factor 
TRP63 defines the developmental progenitor cell pool that yields 
the basal cell population and is thought to be required for for-
mation of the pseudostratified airway, as p63-null mice lack basal 
cells and have a columnar ciliated tracheobronchial epithelium 
(24). Finally, maturation of the epithelium lining respiratory air-
ways, which yields alveolar epithelial type 1 and type 2 pneumo-
cytes, occurs during the late prenatal and early postnatal periods, 
in what is referred to as the “alveolar” phase of lung development 
(refs. 9, 25, and Figure 1). During this period, septation of primi-
tive alveoli and continuing expansion of the microcapillary net-

Figure 2
Regional differences in the cellular composition of the lung epithelium. Within the mouse lung, basal cells are restricted to the tracheobronchial 
epithelium, which is also populated with secretory, ciliated, and neuroendocrine cells to form a pseudostratified epithelium. Beyond the most 
proximal bronchi, the airway of the mouse is composed of a simple columnar epithelium that consists of secretory, ciliated, and neuroendocrine 
cells. In human lungs basal cells are present in diminishing numbers all the way to the level of terminal bronchiole. Respiratory bronchioles are 
lined by a poorly characterized cuboidal epithelium that leads to the alveolar compartment lined with ATI and ATII cells. Putative progenitor cells 
have been identified using in vivo lineage-tracing experiments (Clara and basal cells) or proposed based on their capacity to proliferate and differ-
entiate in culture (Clara, basal, and ATII cells). The epithelium of the mouse trachea and proximal bronchi is maintained by airway basal cells (39, 
78). Within the bronchiolar region, a population of Clara cell secretory protein–expressing (CCSP-expressing) cells localized the neuroepithelial 
body in the proximal bronchiole and a population of naphthalene-resistant CCSP-expressing cells from the distal bronchiole of the mouse serve 
to regenerate their respective regional epithelia following cell-specific injury (66, 67). BASCs, at the bronchioalveolar duct junction, have been 
suggested to serve as progenitors with the capacity to renew both the bronchiolar and alveolar epithelium (68). Finally, it has been long believed 
that ATII cells serve as the progenitors that maintain the alveolar epithelium (73).
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work provide the delicate alveolar structure needed for efficient 
gas transfer across the epithelial-endothelial barrier.

The cellular composition of developing airways can be regulated 
either by signals that control regional (proximal versus distal) cell 
fates or by local signals that guide the type and proportions of 
specialized epithelial cell types. The BMP and WNT pathways are 
two of the major signaling cascades that regulate proximal-to-
distal patterning of the airway tree (reviewed extensively in refs. 
26–28). Inhibition of either pathway in the developing lung endo-
derm results in loss of distal epithelial structures and cell types (8, 
29–31). In contrast, Notch has recently been shown to regulate the 
balance between ciliated and nonciliated luminal cells in develop-
ing airways (32–34). Signaling events involved in the regulation 
of lung patterning operate primarily during early embryonic and 
pseudoglandular phases of lung development; however, those 
involved in regulation of epithelial cell differentiation function 
during both embryonic and postnatal stages of lung development 
in addition to normal homeostasis, repair, and remodeling of the 
epithelium in adult airways.

Epithelial maintenance in the postnatal lung
Embryonic lung development and postnatal growth mark periods 
of dynamic tissue expansion involving intercellular signals that 
govern the abundance and positional identity of many different 
cell types. In contrast, epithelial cells of the adult lung are largely 
quiescent and replaced at a very slow rate. Despite numerous stud-
ies investigating lung epithelial maintenance and repair, contro-
versy remains regarding the regenerative cell types and regulatory 
mechanisms involved. Some studies have suggested that multipo-
tent stem cells either exist in the lung or are recruited from a dis-
tant source such as the bone marrow to the site of lung tissue dam-
age (35–37). However, evidence derived largely from animal models 
suggests that regional endogenous progenitor cells are responsible 
for normal lung epithelial maintenance (Figure 2). The concept 
that regional progenitor cells maintain the adult lung epithelium 
is consistent with the process of developmental lineage restriction 
and functional differences between epithelial cells of different air-
way regions described above. The following discussion provides a 
brief overview of what is known of epithelial progenitor cells that 
contribute to maintenance of the three major epithelial compart-
ments of the postnatal lung.

Pseudostratified epithelium of proximal conducting airways. Airways 
lined by a pseudostratified epithelium extend from the trachea to 
the first two intralobar bronchi in mice and to the distal bron-
chioles of human airways. Both basal and nonciliated luminal 
cells have been shown to cycle in the steady-state and contribute 
to repair of the epithelium of rodent airways. However, lineage-
tracing studies in mice suggest that only basal cells are capable 
of long-term self-renewal and differentiation into basal, ciliated, 
and nonciliated cell types in vivo (38–40). Basal cells are an abun-
dant population of relatively undifferentiated cells that contact 
the basement membrane but not the airway lumen. The expres-
sion of characteristic subsets of intermediate filament proteins 
(keratin 5 [K5], K6, K14, and K16) distinguish basal cells from 
luminal epithelial cells. However, basal cells show heterogeneity 
in their expression of these proteins, with subsets distinguished 
based upon their expression of K5, K14, or K16 (38, 39, 41, 42). 
Basal cells can be fractionated from rodent and/or human airways 
by surface staining for either carbohydrate using Griffonia simplici-
fonia isolectin B4 (43) or various proteins such as aquaporin 3 (44) 

and nerve growth factor receptor (39), or through use of trans-
genic reporter or lineage tracing approaches (39, 41). Functional 
analysis of isolated basal cells suggests significant heterogeneity in 
their capacity for clonal expansion and generation of differentiat-
ing progeny in vitro (39, 41, 45). A number of signaling molecules 
and pathways regulate the behavior of basal cells including TRP63, 
SOX2, WNT, and Notch (24, 46–49). Interestingly, Notch signal-
ing promotes basal cell differentiation into luminal progeny (49), 
suggesting that interactions between basal cells and their lumi-
nal counterparts may determine whether daughter cells undergo 
renewal (generate more basal cells) or differentiation (generate 
luminal cells). This level of cross-talk between basal and luminal 
cells of airways is consistent with findings in other systems of reg-
ulatory interactions between progenitor cell types of multilayered 
epithelia. For example, in the mammary gland epithelium, luminal 
and basal-like myoepithelial cells are maintained as independent, 
self-renewing lineages in vivo; however, upon segregation of the 
two populations, myoepithelial cells retain the capacity for self-
renewal and are able to differentiate into luminal cells. Luminal 
cells, however, lack the capacity for proliferation in the absence 
of interactions with myoepithelial cells (50). Altered regulation of 
signaling pathways such as Notch that mediate cell-cell interac-
tions within the lung epithelium could represent critical deter-
minants of epithelial remodeling such as that seen in squamous 
metaplasia (51), for which basal cells are the likely precursor (52). 
In addition to their role in squamous metaplasia, a population of 
K14-expressing basal cells was demonstrated to be a likely precur-
sor for many non-small cell lung cancers (53).

Even though basal cells represent the progenitor cell of pseu-
dostratified airways with the greatest potential for clonal expan-
sion and differentiation, luminal progenitor cells account for the 
majority of proliferating cells under resting conditions and follow-
ing moderate injury (54). However, lineage-tracing studies in mice 
suggest that nonciliated luminal cells defined by their expression 
of the Clara cell secretory protein SCGB1A1 (commonly known as 
CCSP, CC10, or uteroglobin) are replaced over time, presumably 
by basal cell–derived progeny (40). How these studies in rodent 
airways relate to the behavior of nonciliated luminal progenitor 
cells of the human airway remains unclear. The abundance of 
Clara cells is decreased in human bronchial airways while over-
all epithelial proliferation is increased in patients with epithelial 
hyperplasia and squamous metaplasia. This may indicate a role for 
Clara cells in the regulation of proliferation and normal mainte-
nance within the human bronchi (52). Furthermore, even though 
nonciliated luminal secretory cells of either rodent or human air-
ways share similarities in their responsiveness to cytokine/growth 
factor–stimulated mucus production (55, 56), there are significant 
species differences in the ultrastructural, biochemical, and molec-
ular properties of these cell types (57).

Mucous cell metaplasia is an important finding in patients 
with asthma and chronic obstructive pulmonary disease (COPD), 
where increased mucus production leads to thicker secretions and 
contributes to the formation at mucous plugs within the airways. 
Mucous cells are rare in the absence of allergic or environmental 
exposures and are markedly increased with exposure to allergen, 
cigarette smoke, or other inhaled toxicants. Findings from both 
mouse and human studies suggest that mucous cells have mul-
tiple potential progenitors: interleukin-13 has been shown to 
induce ciliated cells to undergo mucous cell differentiation in a 
mouse model (58), and Clara cells have been shown to differenti-
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ate into mucus-producing cells in response to allergen exposure 
(55, 59). Roles for both ciliated and Clara cells in human mucous 
cell differentiation are supported by the finding that markers of 
mucous cell differentiation colocalize with those of either ciliated 
or Clara cells in tissue from patients with COPD (58, 60). Finally, 
Notch signaling has been shown to induce basal cell differentia-
tion into both Clara cells and mucous cells, but it is unclear wheth-
er mucous cells differentiate directly from basal cells or through a 
Clara cell intermediary (49).

Simple columnar/cuboidal epithelium of distal conducting airways. 
Unlike the human lung, intralobar airways of the mouse lung are 
lined by a simple epithelium that is largely devoid of basal cells 
(Figure 2). Basal cells of human airways extend in progressively 
diminishing numbers into bronchioles as small as 1 mm in diam-
eter (61, 62). Even though nonciliated secretory (Clara) cells of ter-
minal conducting airways in the human lung have been shown to 
proliferate (60), it is not clear whether basal cells of distal airways 
also contribute significantly to epithelial maintenance at this air-
way location. It also remains unclear whether there are differences 
between basal cells of tracheobronchial versus bronchiolar airways. 
In mouse and rat airways, nonciliated secretory cells function as 
an abundant pool of renewing progenitor cells (40, 63). These 
progenitor cells are functionally heterogeneous and include sub-
sets that differ in their contribution toward normal maintenance 
versus repair following chemical (naphthalene) injury (64, 65). 
Naphthalene-resistant epithelial progenitor cells of distal airways, 
termed variant Clara cells, reside at branch points in association 
with neuroepithelial bodies and bronchiolar-alveolar duct junc-
tions (66–68). It has been suggested that bronchiolar-alveolar duct 
junction–associated bronchoalveolar stem cells (BASCs) not only 
represent a multipotent stem cell, but also constitute a tumor-
initiating population, based upon their ability to express marker 
genes representative of both bronchiolar and alveolar epithelium 
in vitro (68, 69). However, this concept has been challenged by the 
finding that alveolar cell types contribute to K-ras–induced adeno-
carcinomas in mice, and in vivo lineage-tracing studies failed to 
identify distal conducting airway progenitors capable of yielding 
both bronchiolar and alveolar epithelium during normal mainte-
nance or following injury with naphthalene or hyperoxia (40, 70). 
However, similar lineage-tracing studies performed using a bleo-
mycin injury model did demonstrate alveolar epithelium derived 
from an Scgb1a1-positive cell (71). Furthermore, a population of 
p63-positive distal airway basal cells was implicated in regenera-
tion of both airway and alveolar epithelium following lung injury 
by H1N1 flu infection (72). These discordant observations high-
light the need for further studies to identify and characterize pro-
genitor cells that maintain bronchiolar and alveolar epithelium.

Alveolar epithelium. The absence of robust ex vivo organ culture 
models to study late stages of lung development and postnatal tis-
sue maintenance make alveolarization and alveolar maintenance 
difficult to study with the same rigor as early embryonic lung 
development or postnatal airway maintenance. The highly spe-
cialized and delicate structure of the alveolar epithelium renders 
it susceptible to injury by either mechanical forces such as ventila-

tion or chemical agents such as elevated oxygen tension or toxic 
gases. Furthermore, alveolar destruction is a common pathologic 
feature of many lung diseases including idiopathic pulmonary 
fibrosis, emphysema, and acute respiratory distress syndrome. 
Some of the hurdles to progress in defining cell types and molecu-
lar mechanisms that regulate alveolar epithelial repair and regen-
eration include a lack of specific lineage-tracing and/or imaging 
methods that allow fate mapping of alveolar epithelial cells in vivo. 
Furthermore, despite the availability of culture models to expand 
and characterize alveolar epithelium in vitro, the relevance of these 
models to in vivo tissue maintenance remains controversial. There-
fore, even though it has long been accepted that ATII cells func-
tion as a progenitor for renewal of injured alveolar epithelium in 
rodents and humans (73–75), it is unclear whether progenitor cell 
function is a uniform characteristic of the entire population of 
ATII cells or whether ATII cells are sufficient for long-term main-
tenance of the alveolus. Other cell types that may have potential 
to contribute to maintenance of the alveolar epithelium include 
ATI cells (76) and rare alveolar epithelial cells that either express 
the α6β4 laminin receptor or have been proposed to represent a 
multipotent BASC (68, 77).

Summary and conclusions
The pulmonary epithelium is an important line of defense 
against our external environment and is imperative for normal 
gas exchange. It develops through a complex interplay between 
endoderm and mesoderm, and continued intercellular signaling 
is key to lung homeostasis. It is clear that a heterogeneous popu-
lation of epithelial progenitor cells has the capacity to maintain 
the conducting airways, as is the case with the alveolar epithelium. 
However, a large gap remains in our understanding of regional 
progenitor cell hierarchies and intercellular signaling pathways 
responsible for maintenance and remodeling of the human lung. 
The pathological changes seen in lung diseases are commonly 
associated with changes in both the epithelium and underlying 
stroma, indicating complex interactions between these cellular 
compartments. There is a need for improved methods to isolate 
and study individual populations of regional epithelial progenitor 
cells from the mouse and human lung. These technical advances 
will provide tractable models to reveal basic signaling mechanisms 
that contribute to normal epithelial maintenance and remodeling, 
as well as screening tools for drug discovery.
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