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Immune responses in the CNS are common, despite its perception as a site of immune privilege. These responses 
can be mediated by resident microglia and astrocytes, which are innate immune cells without direct counterparts in 
the periphery. Furthermore, CNS immune reactions often take place in virtual isolation from the innate/adaptive 
immune interplay that characterizes peripheral immunity. However, microglia and astrocytes also engage in signifi-
cant cross-talk with CNS-infiltrating T cells and other components of the innate immune system. Here we review the 
cellular and molecular basis of innate immunity in the CNS and discuss what is known about how outcomes of these 
interactions can lead to resolution of infection, neurodegeneration, or neural repair depending on the context.

Immune privilege: CNS innate immune cells  
do not phone home
An essential function of innate immunity is to provide the infor-
mational input for adaptive immunity. In peripheral organs, innate 
DCs detect the presence and nature of pathogens (viral, bacterial, or 
protozoal; intracellular or extracellular) and, through the release of 
selective mediators, educate T cells about the specifics of pathogen 
threat. Once the T cell has been informed (primed and polarized), 
it is directed to the site that harbors the pathogen (1–4). Here other 
resident or infiltrating innate cells decode the expressed array of  
T cell cytokines and, in a perfect immunological world, carry out 
the appropriate host attack on pathogen (Figure 1).

Inflammation in the CNS: the role for DCs
DCs play a critical role in initiating T cell responses by taking up 
protein antigens in tissues, processing them into small peptides 
and then displaying them on their surface physically associated 
with MHC class II molecules. DCs migrate through afferent lym-
phatics to draining lymph nodes and present antigen to naive or 
memory T cells. Importantly, there is no evidence that DCs with 
such capacities reside in the healthy CNS parenchyma, nor do 
CNS resident immune cells prime naive T cells (reviewed in ref. 5). 
Cells carrying DC surface markers (e.g., CD11b, CD11c) are readily 
detected in the meningeal coverings of the CNS and in the choroid 
plexus, the site of cerebrospinal fluid synthesis (6). Although cells 
with DC markers are abundant in the inflamed CNS parenchyma, 
they are primarily observed after blood-brain barrier (BBB) disrup-
tion, suggesting that many are peripherally derived while others 
represent resident microglia induced to express such markers by 
locally expressed cytokines (7–10).

The lack of parenchymal DCs and the fact that no other paren-
chymal CNS cells fit the operational definition of a DC (antigen 
uptake, migration to draining lymph nodes, and presentation to 
naive T cells) constitute the cellular basis of CNS immune privilege. 
Immune privilege of the CNS, a hoary concept whose definition has 
become swollen and imprecise over more than six decades can be 
reduced to two observations: (a) immunogens such as xenografts, 
viruses, or bacterial lysates fail to elicit adaptive immune responses 
following non-traumatic micro-injection into the CNS parenchyma 
and (b) peripheral immunization with the same immunogen leads 
to a brisk immune response to the CNS depot of antigen.

Why is CNS tissue immune privileged? Two possibilities are 
salient: (a) robust intrathecal inflammatory reactions can dam-
age delicate, non-regenerating post-mitotic cells such as neu-
rons and oligodendrocytes, suggesting that the lack of adaptive 
immune responses might confer a survival advantage; and (b) 
pathogen ingress into the CNS always involves transit from a 
peripheral site of entry that will first elicit a response in the 
draining lymph nodes or spleen. Therefore, it would be redun-
dant to endow the CNS with the ability to generate adaptive 
immune responses de novo.

The BBB has its phylogenetic origin in invertebrates and evolved 
to provide a precisely calibrated chemical and ionic environment 
to optimize neuronal function. Yet the BBB is also well suited to 
restrain CNS inflammation by excluding plasma proteins as well 
as peripherally derived innate and adaptive immune cells and their 
associated inflammatory molecules (11, 12). Additionally, the 
parenchymal CNS environment is anti-inflammatory, featuring 
high local concentrations of inflammation-suppressive cytokines 
such as TGF-β and IL-10 and is replete with gangliosides, which 
can be toxic to T cells (13–17).

Cumulatively, the lack of resident DCs and the relative anti-
inflammatory environment of neural tissue lead to innate immune 
processes that are muted and secluded within the CNS. There is no 
efficient outward migration of CNS innate immune cells to sound 
the alarm in lymphoid organs, requiring that resident innate 
immune cells deal directly with pathogens and tissue damage. 
Under many circumstances resident cells recruit inflammatory 
cells from the circulation and interact with these cells to facilitate 
vigorous inflammatory responses.

Recognizing and responding to microbial pathogens is the car-
dinal function of innate immune cells. Basic host defense mecha-
nisms are operational in microglia and astrocytes, despite their 
sequestration within the CNS. Host defense begins with recogni-
tion of structural signatures characteristic of pathogens (reviewed 
in refs. 18–20). Microbial warnings are mediated by pathogen-
associated molecular patterns (PAMPs) and include bacterial, viral, 
and protozoal products (protein, lipid, nucleic acid, carbohydrate). 
PAMPs are recognized by TLRs, which reside on the plasma mem-
brane or in endosomal compartments (21). In a prototypical sce-
nario, the engagement of TLRs evokes NF-κB activation, resulting 
in increased transcription of genes encoding IL-1 family cytokines 
(Figure 2). Pro-forms of resulting peptides, for example pro– 
IL-1β, remain cytoplasmic until cleaved enzymatically by activated 
caspase-1, releasing active IL-1β (22).
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Activation of caspase-1 is initiated by signaling from a second 
set of innate immune receptors, termed “nucleotide-binding 
domain leucine-rich repeat–containing (LRR-containing) recep-
tors” (NLRs), whose function is dependent on the assembly of 
large (~700-kDa) complexes termed “inflammasomes” (23, 24). 
NLRs have been studied extensively in hematopoietic cells includ-
ing myeloid lineage cells in the CNS such as microglia. Our under-
standing of specific NLR functions is encumbered by an unwieldy 
and ever-changing terminology. The largest NLR subfamily (with 
14 members), and the one most pertinent for neuroinflamma-
tion, is designated the NACHT domain–, LRR domain–, and pyrin 
domain–containing protein (NALP) family (25). Inflammasomes, 
defined by their core NALPs, are activated by the cytoplasmic 

presence of specific microbial components, tissue-injury prod-
ucts, or inflammation-associated metabolic alterations including 
low cytosolic potassium (26). For NALP3 inflammasomes, effec-
tive stimuli include bacterial muramyl dipeptide, bacterial RNA, 
ATP, and uric acid. Inflammasomes recruit and activate caspase-1, 
thereby complementing TLR signaling to generate mature IL-1β 
and IL-18. Another family member, IL-33, is sequestered within 
cell nuclei, released by cell injury, and inactivated by caspase-1 
cleavage (27–29). Along with IL-1α, IL-33 is considered an alarmin 
(indicator of cell damage) (30).

Dissection of TLR and NLR signals involved the convergence 
of two distinct lines of research. Toll and spätzle, the index TLR 
family receptor/ligand pair, were discovered as regulators of Dro-

Figure 1
Innate immunity in the periphery and CNS. (A) In the face of a peripheral infection, innate immune cells prime and instruct T lymphocytes. Tis-
sue DCs internalize microbial protein antigens, process them into peptides, and display them on their surfaces with MHC class II molecules; 
migrate to draining lymph nodes; and present antigens to naive CD4+ T cells. DCs direct the quality of the subsequent inflammatory response 
by decoding distinctive pathogen-associated signals and transmitting this information to T cells in the form of regulatory cytokines such as IL-12 
(for Th1), IL-4 (Th2), or IL-6/TGF-β (Th17). In addition, lymph node environmental cues can provide information about the site of infection (gut, 
skin, or other). Armed with this information, effector T cells migrate to infected tissues. Upon reactivation, Th1, Th2, and Th17 cells express 
phenotype-defining cytokines that act on resident and recruited innate cells, which operate collectively with factors such as complement to clear 
the infection. (B) Resident microglia and astrocytes exert multiple functions in the CNS, including protective and restorative responses to CNS 
infection or injury. Cytokines and chemokines expressed by resident CNS cells also promote the recruitment of circulating lymphocytes and 
myeloid cells from the periphery to assist in pathogen clearance. Innate responses in the CNS cannot directly initiate adaptive immunity. Innate 
CNS reactions also occur during neuroinflammatory disorders and utilize many of the same components as do host defense responses.
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sophila dorsal-ventral patterning and, later, antifungal immunity 
(18, 21, 31). NALP3, also known as cryopyrin, was characterized as 
the mutated gene in autosomal-dominant autoinflammatory dis-
orders such as Muckle-Wells syndrome and familial cold autoin-
flammatory syndrome, typified by excess IL-1β activity and effec-
tively treated by IL-1β sequestration (22, 25). These pathways were 
linked by the discovery that cooperative signaling through TLRs 
and NLRs culminated in secretion of IL-1 family cytokines (32).

The interplay of TLR and NLR signaling effectively protects 
against pathogens, and both receptor families are expressed in 
resident CNS cells that participate in innate immunity. Microglia, 
myeloid cells of the CNS, express all TLRs (33). A more restricted 
array is expressed in astrocytes (34, 35). Upon pathogen expo-
sure, activated microglia secrete biologically active IL-1β and  
IL-18 through expression of NLR-mediated inflammasome activ-
ity, which in turn elicits production of a secondary inflammatory 
cytokine cascade by both microglia and astrocytes (23, 36, 37). For 
example, IL-1β can induce expression of TNF-α and IL-6, while 
IL-18 stimulates production of IL-17. Inflammatory cytokines also 
diminish BBB barrier function and enhance recruitment of hema-
togenous leukocytes (38).

Innate recognition of tissue injury: variation on a theme
TLRs and NLRs are also highly effective at sensing and respond-
ing to non-infectious sterile tissue injury, as observed in stroke 
or trauma (Figure 2). Just as pathogens are detected by virtue of 
releasing “stranger” signals, so do damaged cells release “dan-

ger” signals, designated damage-associated molecular patterns 
(DAMPs). TLRs and NLRs sense DAMPs: TLR3, TLR7, and 
TLR9 detect microbial nucleic acids and also those released from 
necrotic cells (39). TLR2 and TLR4 respond to cellular hsp such as 
Hsp60, Hsp70, and αB crystallin. NLRs can be activated by endog-
enous cellular products such as uric acid crystals (as in gouty 
arthritis) and aggregated peptides (20, 40). ATP from damaged 
cells activates purinergic receptor-regulated channels to cause 
cytosolic ion fluxes that are detected by NLRs (41, 42).

Cellular soldiers of CNS innate immunity
Microglia. Microglia, the archetypal cells of CNS innate immunity 
(43), are a unique myeloid cell population, derived from the yolk 
sac during a narrow time window before vascularization or defini-
tive hematopoiesis in the embryo (44). Once established in the CNS 
parenchyma, microglia are sustained by proliferation of resident pro-
genitors, independent of blood cells (45). In vitro, microglial activa-
tion by diverse stimuli (46) induces varied programs of gene expres-
sion, yet these gene-expression patterns have not been validated in 
vivo (47). Activation of microglia is accompanied by morphological 
changes (Figure 3 and ref. 48). Despite their dissimilar embryonic 
origins, microglia are related to resident tissue macrophages. Mono-
cyte-derived macrophages are classified as M1, M2a, M2b, and M2c 
subsets (49, 50). It is plausible that microglia also transcribe con-
text-dependent, activation-related genes that confer unique pheno-
types, however the M1/M2 paradigm has not been extended to any 
tissue-resident macrophages, let alone a population as unusual as 
microglia. Repurposing techniques including parabiosis (51) might 
help in accurately defining subsets of microglia (reviewed in ref. 52).

Systemic inflammation also activates microglia (53–57). Para-
doxically, microglial responses to innate stimuli such as systemic 
LPS show interesting neuroprotective properties in experimen-
tal systems. In this paradigm, (stress preconditioning), systemic 
challenges elicit cytokine responses, which activate microglia and 
ameliorate injury after subsequent CNS insults including stroke 
or physical trauma (58–61). The molecular bases and clinical rel-
evance of stress preconditioning remain uncertain.

Chronic neurodegeneration also leads to microglial activation, 
although the outcome of the activation may be beneficial, delete-
rious, or neutral. Neurons constitutively express cell-surface and 
secreted microglial inhibitors; it is conceivable that neuronal cell 

Figure 2
Innate recognition of infection or tissue injury. Endogenous DAMPs 
such as HSP or exogenous bacterial PAMPs activate the innate 
immune cells of the CNS by engaging cell surface receptors such as 
TLRs. Ligation of TLRs initiates an intracellular signaling cascade that 
involves activation of NF-κB and MAPK activity, which leads to for-
mation of transcription factor AP1. Together these components drive 
transcription of IL-1 family cytokine precursor proteins pro–IL-1β and 
pro–IL-18. NLRs are activated by cytosolic microbial products, changes  
in cytosolic pH, or potassium levels often associated with stimulation 
of the ligand-gated ion channel P2X7R by extracellular ATP. NLRs 
such as NALP3 are central constituents of inflammasomes, multipro-
tein complexes that mediate activation of caspase-1, which catalyzes 
cleavage and maturation of IL-1 family cytokines. Functional domains 
of inflammasome components include caspase activation and recruit-
ment domains (CARDs), which are present in both caspase-1 and the 
adapter apoptosis-associated Speck-like protein containing CARD 
(ASC). PYD, pyrin domain.
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death or injury removes this suppression (46). If so, the microg-
lial response to neurodegeneration represents a specialized danger 
signal. Genetic models have unraveled certain microglial contribu-
tions to neurodegeneration. In a genetic mouse model of motor 
neuron disease, targeted deletion of the causative mutant superox-
ide dismutase gene in microglia remarkably prolonged the lifespan 
of the mice even though the mutant transgene was still expressed 
by neurons and astrocytes (62). Targeted ablation of the CX3CR1 
chemokine receptor gene (expressed in the CNS only by microglia) 
modulates microglial reactivity, in most cases increasing cytokine 
production and effector functions (63). CX3CR1-deficient mice 
show enhanced amyloid clearance in Alzheimer’s disease (AD) amy-
loid deposition models (64), consistent with beneficial activation of 
microglia (52, 63, 65, 66). By contrast, CX3CR1 deficiency worsens 
toxicity in t hyperphosphorylation models (67) and in models incor-
porating both pathologies, and complex effects are seen in mod-
els incorporating both pathologies (68). Amyloid β, the principal 
component of AD-associated amyloid, directly activates microglia 
through the NALP3 inflammasome pathway (36), and subsequent 
production of IL-1β may worsen neurodegeneration (69).

Astrocytes. With the exception of microglia and mast cells, CNS 
resident cells descend from neuroepithelial stem cells and are cat-
egorized as neurons and glia, with glia further subdivided into 
astrocytes, oligodendrocytes, and polydendrocytes. A traditional 
view holds that glia exist to serve and protect neurons. However, 
neurons and glia function in intimate interconnections to support 
every aspect of brain development and function (as reviewed in 
refs. 70–74). Astrocytes are the best-characterized innate immune 
neuroglia. The main functions of astrocytes include buffering 
CNS potassium, removing and recycling potentially toxic gluta-
mate, adjusting water balance, and modulating synaptic activity 
and blood flow. Astrocytes also produce neurotrophins and anti-
inflammatory cytokines such as IL-10 (75).

Upon activation by TLR and NLR signals, astrocytes participate in 
innate immune reactions and are the principal CNS sources of innate 
inflammatory mediators, including several complement components, 
IL-1β, IL-6, and chemokines such as CCL2, CXCL1, CXCL10, and 

CXCL12 (76–89). Essential homeostatic functions of astrocytes are 
compromised during inflammatory reactions, potentially worsening 
outcomes. For example, CXCL12 signaling to astrocytes promotes 
physiological release of glutamate during synaptic transmission, 
and also induces release of small amounts of TNF-α. In inflamma-
tory conditions, CXCL12 plus TNF-α signal to microglia to produce 
large quantities of TNF-α. This cytokine, at high concentrations, 
impairs the capacity of astrocytes to detoxify glutamate, resulting in 
neuronal loss through a mechanism termed “excitotoxicity” (79, 90, 
91). Microglial-astrocyte interactions are also critical in CNS innate 
immunity. The deciphering of microglial-astrocyte communication 
at the molecular level is still in its infancy but already shows promise 
for identifying interesting therapeutic targets (92, 93).

In a mouse model, the inflammatory transcriptional regulator 
NF-κB was silenced in astrocytes by transgenic overexpression of a 
naturally occurring NF-κB inhibitor (94). The blocking of NF-κB 
signaling in astrocytes showed benefit in disease and injury models 
— reduced retinal ganglion cell death after ischemic injury; improved 
recovery from spinal cord trauma, along with increased axonal spar-
ing and regeneration; and lessened inflammation in EAE, a rodent 
model of the human inflammatory demyelinating disease MS. These 
findings highlighted the contributions of astrocyte-specific inflam-
matory signaling for a multitude of CNS pathologies (94–98).

Interactions between innate immune cells  
and T cells in the CNS
CNS innate immune cells respond to primed T cells and their 
cytokine directives. Under T cell–mediated inflammatory condi-
tions, the CNS admits large numbers of peripheral innate immune 
cells. Indeed, CNS infiltration by peripheral cells is critical for pro-
tective host defense against infection and for repair after stroke or 
physical trauma (99–104). However, restraint is required because 
hematogenous inflammation causes profound damage if the reac-
tion is excessive or inappropriate. The interaction of the CNS innate 
immune system with infiltrating T cells is typified by MS and EAE 
(reviewed in refs. 105, 106). EAE can be induced by actively immu-
nizing rodents with myelin protein peptides, which are emulsified 

Figure 3
Microglial cells, as described by Pio del Rio-Hortega (161). 
(A) Pio del Rio-Hortega (1882–1945), who characterized and 
named microglial cells. (B) Images of ramified microglial cells 
drawn by Hortega. (C) Morphological transformation of microglia 
to phagocytic macrophage. Panels as lettered in C: A, Microg-
lial cell with modestly thickened processes as compared with 
ramified microglia; B, microglial cell with short, thick processes 
and enlarged cell body; C, microglial cell with pseudopodia; 
D, amoeboid microglial cell; E, amoeboid microglial cell with 
pseudopodia; F, microglial cell with phagocytosed leukocyte; 
G, microglial cell with numerous phagocytosed erythrocytes;  
H, microglial cell with lipid inclusions, also termed “foam cell”; 
I, microglial cell in mitotic division. Reproduced with permission 
from Physiological Reviews (161).
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in immune-stimulating adjuvants. IFN-γ–producing Th1 cells and  
IL-17–producing Th17 cells subsequently accumulate in the CNS 
and initiate demyelination. This immunization protocol also gener-
ates T cells that cause disease upon adoptive transfer to naive recipi-
ents, a process termed “passive immunization” (107). Myelin-specif-
ic CD4+ T cells are found in peripheral blood of healthy individuals 
and in MS patients (108, 109). Clonally expanded and potentially 
autoreactive CD4+ and CD8+ T cells have been detected at autopsy in 
CNS tissues from individuals with MS but not in relevant controls 
(110, 111). Thus it is likely that, in MS as in EAE, disease-causing 
T cells are initially activated in peripheral lymphoid organs, where 
they undergo differentiation and expansion. When autoreactive 
T cells are reactivated in the CNS by cognate antigen, release of 
immune mediators facilitates an extensive local inflammatory reac-
tion, which abrogates the trafficking restraints and barrier functions 
of the BBB. Large-scale CNS infiltration by inflammatory cells and 
entry of plasma proteins culminates in demyelination, edema, com-
promise of neural cell function, and neurobehavioral impairment.

How do T cells communicate with resident  
and infiltrating innate cells?
T cell adoptive transfer experiments demonstrate that encephali-
togenicity of Th cells is exquisitely dependent on their production 
of GM-CSF — even though GM-CSF–deficient Th cells enter CNS 
and produce other cytokines, disease does not develop. GM-CSF 
is required to recruit CD11b+ myeloid cells, which are thought to 
sustain local CNS inflammation, mediate direct myelin damage, 
and support the survival of lymphocytes (112–114).

Microglia express IL-23 and IL-1β, both of which promote GM-
CSF expression by T cells (115), implicating microglial–T cell 
interactions in intrathecal T cell survival and effector function. In 
transgenic mice, EAE was less severe if microglial responses were 
impaired (116). Antibodies to GM-CSF are being utilized in clini-
cal trials of inflammatory diseases so that translational applica-
tions of this line of research are feasible (117).

Neutrophils
That neutrophils are considered the first line of defense against 
extracellular and intracellular bacteria is illustrated by life-threat-
ening conditions that result from neutrophil deficiency (118, 119). 
Neutrophils are rapidly mobilized from the bone marrow in response 
to signals from CXC family chemokines to mediate pleiotropic func-
tions in immune-inflammatory responses (reviewed in ref. 120). Neu-
trophils respond to PAMPs and DAMPs through TLRs and NLRs 
and are also activated by cytokines such as TNF-α and IFN-γ. Once 
activated, neutrophils upregulate CD15 and CD11b, adhesion mol-
ecules that enhance their association with endothelium and migra-
tion into tissues (120). Activated neutrophils also produce reactive 
intermediates through their vigorous respiratory burst and release 
a plethora of pre-formed mediators: cytokines, chemokines, colony-
stimulating and angiogenic factors, lytic enzymes, and antimicro-
bial peptides. Neutrophils influence lymphocyte migration as well; 
TNF-α–induced production of CXCL9 and CXCL10 or CCL20 by 
neutrophils recruits Th1 or Th17 cells, respectively (121–123). Neu-
trophil-lymphocyte interactions induce survival factors that prolong 
the lifespan of the short-lived neutrophils. Adding to the inflamma-
tory cascade, T cells recruit neutrophils by secreting IL-17 (124).

Neutrophils are implicated in inflammatory conditions of the 
CNS. Bacterial meningitis elicits neutrophil infiltration, which is 
often associated with unfavorable outcomes, potentially because 

of the severity of the infection (125). Roles of neutrophils in 
chronic sterile neuroinflammation (as in MS) are under investiga-
tion. G-CSF, a growth factor that supports neutrophil activation, 
worsens MS disease activity (126). Neutrophils are not detected 
in postmortem MS tissues, nor are there increased neutrophils in 
the blood or CSF of MS patients (127). By contrast, lesions of neu-
romyelitis optica (NMO), an autoimmune CNS disease caused by 
aquaporin 4 antibodies, show abundant neutrophils, which may 
also be found in CSF during active disease (128). Variable acuity of 
NMO and MS may contribute to these different findings. NMO 
lesions are much more destructive and more likely to cause death 
during acute disease, whereas fatal outcomes of MS occur through 
complications of immobility after decades of disease. Therefore, 
the absence of neutrophils in lesions of MS (studied at autopsy) 
may not be proof of their absence during lesion formation.

Animal models also implicate neutrophil involvement in MS. 
In EAE, neutrophils are among the earliest CNS-infiltrating 
cells (129, 130), and neutrophil depletion reduces EAE severity 
dramatically (131). Furthermore, CXCR2–/– mice are resistant to 
EAE induction (131, 132).

Neutrophil influx into the CNS during EAE results from TNF-α 
production by meningeal mast cells (133). Because neutrophils also 
promote B cell survival and proliferation (120), innate neutrophils 
and mast cells might contribute to the B cell follicle–like structures 
that are found at autopsy in the meninges of MS tissues (134, 135).

Mast cells
Mast cells are myeloid cells defined by c-kithi FcεRI+ expression and 
are well known for roles in allergic disease and host defense (136, 
137). Mast cells are particularly numerous within tissues exposed 
to the external environment, such as skin, gut, and respiratory 
tract, but are also found in brain, spinal cord, and meninges. Clas-
sic antimicrobial mast cell responses involve the release of TNF-α 
and IL-1β (136, 138–140).

Collectively, mast cells comprise a large population of CNS cells, 
yet they are fixed and widely dispersed, which poses hurdles for 
direct study. Nevertheless, provocative correlative findings have been 
reported that implicate these cells in CNS inflammation. Mast cells 
are present in active MS plaques (141, 142), and mast cell–specific 
transcripts encoding tryptase and FcεRI are detected in lesions of 
chronic MS (143). Tryptase and histamine are present in the CSF of 
MS patients but not healthy individuals (144, 145). Mast cells in the 
CNS parenchyma likely contribute to local inflammatory responses, 
and CNS mast cells appear to exert both neuroprotective and dam-
aging effects following concussion injury or stroke (146).

There are limitations to the commonly used experimental mod-
els that utilize c-kit–mutant, mast cell–deficient mice (147) for the 
study of mast cell function, as mast cell development is exquisitely 
dependent on SCF signaling through c-kit. Mice with reduced SCF 
signaling due to mutations in the c-kit receptor (W/Wv or Wsh 
mice) exhibit a loss of mast cells. Mast cells can be reconstituted by 
systemic or local transfer of bone marrow–derived mast cell precur-
sors in mice harboring c-kit mutations. The c-kit–mutant mice have 
additional hematologic and developmental abnormalities, and it is 
therefore essential to use mast cell reconstitution to confirm that the 
observed phenotypic differences between wild type and Kit mutant 
mice are mast cell dependent (148, 149). Unfortunately, transferred 
mast cells fail to reconstitute the brains and spinal cords of c-kit 
mutant mice, making it challenging to use this model to address the 
functions of CNS-resident mast cells in health or disease (147).
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Initial EAE studies using c-kitW/Wv or c-kitWsh mice employed 
diverse disease-induction protocols and subjective neurobehav-
ioral scoring, yielding inconsistent and conflicting conclusions 
about EAE severity in mast cell–deficient mice (150–153).

Objective, quantitative disease severity measures revealed that 
mast cells were critical for fulminant disease in both chronic 
(C57BL/6-MOG35–55–induced) and relapsing remitting (SJL-
PLP139–151–induced) EAE (133, 154). BBB integrity was enhanced 
and decreased inflammatory cell infiltrates were decreased in  
c-kitW/Wv mice with EAE, as compared with wild-type animals (133). 
Interestingly, TNF-α production by dura mater and pia mater 
mast cells regulates BBB function as well as T cell and myeloid 
cell infiltration into the CNS (133), consistent with the idea that 
these mast cells are protective first responders to microbial CNS 
challenge, as they are in the periphery.

During the preclinical phase of EAE, T cells interact with APCs and 
proliferate in the leptomeninges around the spinal cord, suggesting 
that the leptomeninges is a site of T cell reactivation (155–158). Given 
that mast cells direct immune cell traffic to peripheral sites of infec-
tion (159), it is tempting to speculate that meningeal mast cells may 
also promote cellular cross-talk between T cells and myeloid cells in 
EAE. Determination of how CNS parenchymal and meningeal mast 
cells contribute both to protective CNS immunity and to harmful 
neuroinflammation now appears critical for identifying effective and 
comprehensive therapies for CNS diseases. The ongoing develop-
ment of novel genetic murine models with selective mast cell defects 
will help toward this goal (160).

Summary
The immune-privileged status of the CNS has evolved to main-
tain homeostasis required for neural function and host defense. 
The inability to generate robust and potentially harmful adap-
tive immune responses therefore requires a primary reliance for 
host defense on the sequestered and moderate innate responses of 
microglia, astrocytes, and other resident innate cells. Nonetheless, 
pathologic neuroinflammation is inherent in all diseases, which 
disrupt CNS tissue elements, including MS, AD, Parkinson’s dis-
ease, stroke, and traumatic brain injury. Our understanding of the 
interactions between resident and peripheral immune cells, neu-
rons, and glial cells and their implications for host defense, tissue 
repair, and neurodegeneration is still in its infancy. However, the 
delineation of the molecular interactions between the immune and 
nervous systems is proceeding rapidly and will yield translational 
application in the years to come.
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