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Kidney	transplant	recipients	that	develop	signs	of	renal	dysfunction	or	proteinuria	one	or	more	years	after	
transplantation	are	at	considerable	risk	for	progression	to	renal	failure.	To	assess	the	kidney	at	this	time,	a	
“for-cause”	biopsy	is	performed,	but	this	provides	little	indication	as	to	which	recipients	will	go	on	to	organ	
failure.	In	an	attempt	to	identify	molecules	that	could	provide	this	information,	we	used	micorarrays	to	ana-
lyze	gene	expression	in	105	for-cause	biopsies	taken	between	1	and	31	years	after	transplantation.	Using	super-
vised	principal	components	analysis,	we	derived	a	molecular	classifier	to	predict	graft	loss.	The	genes	associ-
ated	with	graft	failure	were	related	to	tissue	injury,	epithelial	dedifferentiation,	matrix	remodeling,	and	TGF-β	
effects	and	showed	little	overlap	with	rejection-associated	genes.	We	assigned	a	prognostic	molecular	risk	score	
to	each	patient,	identifying	those	at	high	or	low	risk	for	graft	loss.	The	molecular	risk	score	was	correlated	
with	interstitial	fibrosis,	tubular	atrophy,	tubulitis,	interstitial	inflammation,	proteinuria,	and	glomerular	
filtration	rate.	In	multivariate	analysis,	molecular	risk	score,	peritubular	capillary	basement	membrane	mul-
tilayering,	arteriolar	hyalinosis,	and	proteinuria	were	independent	predictors	of	graft	loss.	In	an	independent	
validation	set,	the	molecular	risk	score	was	the	only	predictor	of	graft	loss.	Thus,	the	molecular	risk	score	
reflects	active	injury	and	is	superior	to	either	scarring	or	function	in	predicting	graft	failure.

Introduction
Kidney transplants that develop dysfunction or proteinuria 
after one year following transplantation are at considerable 
risk for progression to renal failure (1). Certain histopathologic 
features, particularly interstitial fibrosis and tubular atrophy 
(IFTA), correlate with graft dysfunction, treatment response, 
and risk of progression to failure in transplants as well as in 
native kidneys (2–8). This has led to the belief that late failure 
of kidney transplants is due to progressive nonspecific scarring, 
possibly related to calcineurin inhibitor toxicity. However, IFTA 
is common in kidney transplants, reflecting the burden of injury 
including donor death, organ harvest, and the transplantation 
process, and mostly develops in the first year (9). Recent analy-
ses (1, 10) indicate that the main cause of late graft loss is not 
unexplained scarring or calcineurin inhibitor toxicity but spe-
cific disease entities, particularly late antibody-mediated injury 
and recurrent disease.

Identifying the molecules associated with graft failure could 
potentially lead to interventions that would slow the progression 
of organ failure. Some of the individual molecules that predict 
risk of failure in native proteinuric kidney disease include VEGF 
and molecules associated with activation of intracellular hypoxia 
response (11). In kidney transplant biopsies, many molecules 
show altered expression related to rejection or injury (12–16). 
However, no comprehensive analysis of the relationship between 
the transcriptome and allograft survival has been performed.

The emergence of microarrays permits a genome-wide sur-
vey of the transcripts associated with future failure in renal 

allografts presenting with clinical indications for a biopsy, 
i.e., biopsies for cause (BFCs). The present study analyzed the 
relationship between gene expression in late BFCs in human 
kidney transplants and subsequent graft loss and assessed the 
predictive value of gene expression alone and in combination 
with histologic lesions and clinical variables. We evaluated the 
performance of these genes in an independent validation set 
and in a population of early biopsies that have a very low risk 
of subsequent graft failure.

Results

Patient demographics and graft survival in the BFC population
Because almost all failures occurred in patients who presented 
for a BFC after 1 year following transplantation (1), this group 
was selected for the analysis of risk prediction. The study popula-
tion included 105 consecutive consenting patients who under-
went BFCs between 1 and 31 years after transplantation (median, 
57 months). Where more than 1 biopsy was available per patient, 
only the first biopsy was used for analyses. Median time to graft 
loss was 14 months, and the median follow-up after biopsy for 
patients without death or graft loss was 32 months.

We observed 30 graft failures during follow-up, and 4 patients 
died with a functioning graft. Demographics and clinical char-
acteristics of all patients are outlined in Table 1. Grafts that 
subsequently failed had higher incidence of proteinuria and 
rapid deterioration in function before biopsy and lower glo-
merular filtration rate (GFR) at time of biopsy. There were 
no differences in primary disease, time after transplantation, 
maintenance immunosuppression, or incidence of anti-HLA 
antibodies between grafts that subsequently failed after biopsy 
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and those that did not. As previously reported, the main dis-
ease diagnoses in biopsies from grafts that failed were antibody-
mediated rejection (ABMR) (either C4d-positive or C4d-nega-
tive) and glomerulonephritis (1).

Gene expression signature of future graft loss
To identify all genes associated with graft loss, we performed a 
Cox regression on the entire dataset of 105 late biopsies, using 
all probesets that passed the interquartile range (IQR) filter  

Table 1
Demographics, immunosuppression, and indication for biopsy

Patient demographics  All patients  Failed grafts  Non-failed grafts  P
	 	 n = 105 n = 30 n = 75 
Time of follow-up after biopsy (d) 774 404 922 3 × 10–6

Time of biopsy after transplant (d) 1734 1,853 1,688 0.64
Diagnosis
 ABMR 11 5 6 0.19
 TCMR 14 3 11 0.53
 Borderline rejection 11 2 9 0.73
 Mixed ABMR and TCMR 3 2 1 0.20
 Glomerulonephritis 22 9 13 0.15
 BK virus 1 0 1 1.0
 Other diagnoses 43 9 34 0.15
Recipient sex, M/F 65/40 (62%/38%) 20/10 (67%/33%) 45/30 (60%/40%) 0.82
Race
 White 64 (61%) 18 (60%) 46 (61%) 0.99
 Black 10 (10%) 4 (13%) 6 (8%) 0.70
 Other 15 (14%) 4 (13%) 11 (15%) 0.98
 Unknown 16 (15%) 4 (13%) 12 (16%) 0.98
Primary disease
 Diabetic nephropathy 13 (12%) 4 (13%) 9 (12%) 0.98
 Hypertension/large-vessel disease 6 (6%) 1 (3%) 5 (7%) 0.80
 Glomerulonephritis/vasculitis 51 (49%) 20 (67%) 31 (41%) 0.06
 Interstitial nephritis/pyelonephritis 8 (8%) 1 (3%) 7 (9%) 0.58
 Polycystic kidney disease 14 (13%) 1 (3%) 13 (17%) 0.16
 Others 7 (7%) 2 (7%) 5 (7%) 1.00
 Unknown etiology 6 (6%) 1 (3%) 5 (7%) 0.80
Previous transplant 9 (9%) 0 (0%) 9 (12%) 0.14
Donor sex, M/F 41/64 (39%/61%) 9/21 (30%/70%) 32/43 (43%/57%) 0.49
Deceased donor transplants 57 (54%) 18 (60%) 39 (52%) 0.76
Indication for biopsy
 Rapid deterioration of graft function 26 (25%) 14 (47%) 12 (16%) 0.004
 Slow deterioration of graft function 39 (37%) 7 (23%) 32 (43%) 0.18
 Stable impaired graft function 7 (7%) 1 (3%) 6 (8%) 0.69
 Investigate proteinuria 15 (14%) 7 (23%) 8 (11%) 0.25
 Follow-up from previous biopsy 6 (6%) 1 (3%) 5 (7%) 0.80
 Others 6 (6%) 0 (0%) 6 (8%) 0.28
 Indication unknown 6 (6%) 0 (0%) 6 (8%) 0.28
Estimated GFR (average ml/min ± SD) 47 ± 18 38 ± 20 50 ± 17 0.002
Proteinuria-positive 57 (54%) 25 (83%) 32 (43%) <0.001
HLA antibody status
 PRA-positive 64 (61%) 21 (70%) 43 (57%) 0.49
 PRA class I–positive 44 (42%) 12 (40%) 32 (43%) 0.97
 PRA class II–positive 48 (46%) 16 (53%) 32 (43%) 0.61
 DSA-positive 48 (46%) 18 (60%) 30 (40%) 0.18
 DSA class I–positive 18 (17%) 7 (23%) 11 (15%) 0.57
 DSA class II–positive 38 (36%) 15 (50%) 25 (33%) 0.28
Maintenance immunosuppressive regimens at biopsy
 MMF, tacrolimus, steroid 37 (35%) 11 (37%) 26 (35%) 0.98
 MMF, tacrolimus 1 (1%) 1 (3%) 0 (0%) 0.28
 MMF, cyclosporine, steroid 26 (25%) 7 (23%) 19 (25%) 0.98
 MMF, steroids 3 (3%) 0 (0%) 3 (4%) 0.54
 Azathioprine, cyclosporine, steroids 20 (19%) 5 (17%) 15 (20%) 0.93
 Others 18 (17%) 6 (20%) 12 (16%) 0.89

Bold type indicates significant P values. MMF, mycophenolate mofetil; PRA, panel-reactive antibody.
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(n = 11,500) (see Methods). 886 genes represented by 1,312 probe-
sets were significantly associated with graft failure (598 positively 
and 288 negatively) at the 0.0001 level (uncorrected P value) (Sup-
plemental Table 1; supplemental material available online with 
this article; doi:10.1172/JCI41789DS1).

We compared the genes associated with subsequent graft loss 
with those associated with rejection at the time of biopsy in the 
same dataset. Rejection-associated genes had been identified in 
a previous analysis (14) using the BioConductor software pack-
age limma (17). Rejection-associated genes and genes associated 
with future graft loss were derived from the same biopsies. Of 
the 886 genes associated with graft loss, only 82 (9%) overlapped 
with the gene list associated with rejection at the same P value 
cutoff (Figure 1). The transcripts associated with future graft loss 
were primarily those that had been annotated as associated with 
tissue injury, matrix remodeling, and epithelial dedifferentiation 
(Table 2), while the rejection-associated genes had been annotated 
as reflecting inflammation, i.e., IFN-γ effects, infiltrating T cells, 
and macrophages (18).

Developing a gene expression risk score for predicting graft loss
Because we aimed to develop a biopsy-based risk prediction meth-
od, we built a gene-based classifier to predict graft loss. Classifier 
results were obtained using a multiple 10-fold cross-validation 
method (19). Details of the analysis are described in Methods.  
A diagram illustrating the process of building the classifier and 
validation steps is shown in Supplemental Figure 1.

The classifier used 2,748 probesets on at least one occasion, 
and 117 of the probesets were used in at least 50% of the classi-
fiers. The 30 annotated genes used most frequently by the classi-
fier to assign the risk of graft loss are shown in Table 3, ordered 
by the proportion of times each gene was used in all the cross-
validation/resampling loops. Twenty-seven of the top 30 genes 
(90%) had previously been annotated in experimental transplan-
tation systems as members of pathogenesis-based transcript 
sets (PBTs) reflecting tissue injury and matrix remodelling (see 
Methods and Supplemental Table 2).

We used the molecular classifier to assign a prognostic molecu-
lar risk score to each biopsy using supervised principal compo-
nents analysis (PCA) (20). Based on the average risk score across 
the test sets in the 100 validation loops, we assigned patients into 
either the high- or low-risk group (n = 52 high-risk, n = 53 low-risk 
patients) (Figure 2). The range of risk scores for each biopsy across 
the validation loops is shown in Supplemental Figure 2. The mean 
risk score in those kidney grafts surviving to 1 year after biopsy 
was –0.31 versus 1.85 in those grafts that failed by 1 year (t test,  
P = 9.3 × 10–8). In the high-risk group, 25 of 52 patients progressed 
to graft loss after biopsy, compared with only 5 losses in the low-

risk group (log-rank test, P = 3 × 10–7). Kaplan-Meier survival 
curves for the 2 risk groups are shown in Figure 3.

Relationship between risk score and clinico-pathological features
Table 4 shows the correlation between the molecular risk score and 
histologic and clinical variables. The risk score was negatively cor-
related with renal function (estimated GFR) at the time of biopsy 
and positively correlated with proteinuria, interstitial inflamma-
tion, atrophy, and fibrosis and less strongly with tubulitis. It was 
not correlated (P > 0.05) with time of the biopsy after transplanta-
tion, glomerular or arterial changes, or arteriolar hyalinosis.

We examined the relationship between risk score and time to 
failure (Figure 4). Among the patients with graft loss, a higher 
risk score was associated with shorter time to failure (P = 0.0006). 
Among patients censored only because of end of study, there 

Table 2
PBT overrepresentation analysis for probesets associated  
with graft loss

Biological process Transcript setA P
Severe tissue injury GST <10–14

Reversible tissue injury  IRIT(I) <10–14

 (intermediate phase)
TGF-β signaling TGFB(1) <10–14

TGF-β signaling TGFB(2) 2.3 × 10–14

Reversible tissue injury (late phase) IRIT(L) 1.7 × 10–13

Endothelial cell activation ENDAT 1.7 × 10–12

Fibroblast activation FIBET 5.5 × 10–9

Severe tissue injury CIST 8.6 × 10–9

Alternative macrophage activation AMAT1 5.3 × 10–8

Tissue injury due to alloresponse NIRIT 6.8 × 10–5

Macrophage activation by IL-4 AMAT 0.0002
Fibroblast activation FIBTG 0.0005
Classical macrophage activation IMAT 0.0013
IFN-γ effects GRIT2 0.0017
Parenchymal homeostasis KT1 0.0024
Reversible tissue injury (early phase) IRIT(E) 0.016
IFN-γ effects GRIT1 0.025
Parenchymal homeostasis KT2 0.19
Macrophage infiltration/activation QCMAT 0.43
T cell infiltration QCAT 0.72
NK cell infiltration NKST 0.88
B cell infiltration BAT 0.94
T cell infiltration CAT1 0.99
Plasma cell infiltration IGT 1.00

ATranscript sets were defined in previous analyses and represent 
distinct biological processes in renal allograft dysfunction. They are 
explained in Methods.

Figure 1
Overlap of genes associated with graft loss and those associated with 
rejection. We identified the genes associated with graft loss in a Cox 
regression model (P < 0.0001) and compared them with those genes 
whose association with rejection versus nonrejection was significant  
(t test) at P < 0.0001. The number of genes that were unique to each 
list as well as the number of overlapping genes are shown.
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was no relationship between risk score and time to censoring. 
Among patients censored because of death, all 4 of whom died 
fewer than 400 days after biopsy, there was a significant cor-
relation between risk score and time to death (P = 0.01). This 
may reflect the effect of a failing kidney transplant on the risk 
of death, but the small number of observations precludes firm 
conclusions. Thus, we included deaths with functioning grafts 
as censored data in the classifier and Cox regression analyses. 
We conclude that the risk score predicts not only whether failure 
will occur but also time to failure.

The association of molecular, clinical, and histologic features 
with graft loss was assessed in a univariate Cox regression analy-
sis (Table 5). In this analysis, the features significantly associ-
ated with graft loss were molecular risk score, proteinuria, inter-
stitial fibrosis, tubular atrophy, peritubular capillary basement 
membrane multilayering (PTCML), mesangial matrix score, 
interstitial inflammation, glomerulitis, low GFR, and absence 
of arteriolar hyalinosis. Many variables were not associated with 
outcome, including time of biopsy after transplantation, the 
presence of HLA antibody, C4d staining, transplant glomeru-
lopathy, capillaritis, and arterial changes.

To assess the independent associations of these variables, we per-
formed a forward stepwise multivariate regression (Table 6) of all 
features that reached significance (P < 0.05) in the univariate anal-
ysis. This analysis identified the independent predictors of graft 
loss as the molecular risk score, peritubular basement membrane 
multilayering, proteinuria, and arteriolar hyalinosis. Surprisingly, 
neither GFR nor IFTA was significantly associated with graft loss 
when the risk score was included in the multivariate analysis.

Since the presence of proteinuria and GFR were known before the 
biopsy, we repeated the multivariate analysis excluding these factors 
to determine which information arising from the biopsy (histology, 
microarray results) predicted failure. When GFR and proteinuria 
were excluded, the independent risk factors were the molecular risk 
score, PTCML, and absence of arteriolar hyalinosis.

When the receiver operating characteristic (ROC) curves for each 
of the features independently associated with graft loss in the mul-
tivariate analysis were compared (Figure 5A), the molecular risk 
score showed a greater area under the curve (AUC = 0.83) than 
the clinical or histologic features (AUC = 0.63–0.76). When the  
P values for the differences in AUCs were calculated by permutation 
test, they were not significant: P = 0.17 for risk score versus pro-

Table 3
The 30 genes used most frequently by the classifier to assign risk of graft failure

Affymetrix ID GeneA Membership in  Proportion of  P C Expression  Expression  Expression  Ratio failed/
  transcript setB times gene   in control  in failed  in non-failed censored 
   was used in   kidneys  grafts grafts grafts
   validation loops
215646_s_at VCAN FIBET NIRIT TGFB 1 1.25 × 10–10 33 184 54 3.423
202238_s_at NNMT NIRIT 1 4.04 × 10–10 94 570 170 3.353
207052_at HAVCR1 IRIT(I) 0.999 3.00 × 10–12 48 97 38 2.526
208083_s_at ITGB6 KT1 0.999 1.30 × 10–9 48 220 71 3.11
202018_s_at LTF IRIT(L) 0.986 1.54 × 10–7 153 1,620 431 3.761
201939_at PLK2 AMAT 0.982 3.39 × 10–11 68 178 83 2.14
222486_s_at ADAMTS1 IRIT(I) 0.982 3.63 × 10–11 131 204 98 2.08
204627_s_at ITGB3 CIST GST 0.977 2.20 × 10–10 35 75 36 2.088
223218_s_at NFKBIZ AMAT 0.972 4.90 × 10–9 471 897 373 2.405
225681_at CTHRC1 CIST 0.97 5.54 × 10–8 23 185 63 2.937
202376_at SERPINA3 GST IRIT(I) 0.969 3.96 × 10–8 132 498 196 2.537
205466_s_at HS3ST1 AMAT 0.962 3.38 × 10–9 37 104 47 2.183
203021_at SLPI AMAT 0.958 1.27 × 10–7 134 758 294 2.574
206336_at CXCL6  0.954 8.20 × 10–7 13 77 26 2.965
206840_at AFM KT1 0.947 1.01 × 10–6 623 93 257 0.363
204124_at SLC34A2  0.946 1.03 × 10–10 62 108 60 1.798
204259_at MMP7 GST IRIT(L) 0.944 5.75 × 10–8 586 2,474 1,054 2.347
209774_x_at CXCL2 AMAT CIST GST 0.941 4.78 × 10–9 116 72 36 2.021
209278_s_at TFPI2 FIBET KT1 0.939 7.73 × 10–8 63 353 137 2.571
1569003_at TMEM49  0.935 1.26 × 10–7 159 162 74 2.183
217767_at C3 AMAT IRIT(I) 0.935 3.80 × 10–7 294 1,427 599 2.381
211981_at COL4A1 FIBET IRIT(I) TGFB 0.929 2.84 × 10–11 267 650 378 1.717
211864_s_at MYOF IMAT 0.92 2.03 × 10–11 169 400 231 1.728
227697_at SOCS3 CAT1 0.913 2.62 × 10–8 63 48 23 2.034
205729_at OSMR IRIT(I) GST 0.91 2.09 × 10–9 58 125 67 1.88
202404_s_at COL1A2 IRIT(I) TGFB 0.908 4.18 × 10–7 104 779 323 2.414
212531_at LCN2 AMAT 0.905 8.60 × 10–8 72 159 81 1.965
211161_s_at COL3A1 IRIT(L) TGFB GST 0.905 3.15 × 10–7 141 867 360 2.407
226621_at FGG IRIT(E) 0.903 4.46 × 10–9 190 505 272 1.855
210764_s_at CYR61 FIBET IRIT(I) GST 0.877 1.07 × 10–9 855 229 131 1.741

AWhere there are multiple probesets per gene, only the most frequently used (highest “Proportion”) is shown. BTranscript sets were previously defined and 
represent biological processes in allograft dysfunction; they are explained in Methods. CFrom Cox regression.
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teinuria, P = 0.06 versus PTCML, and P = 0.002 versus arterial hya-
linosis. However, the maximum accuracy obtainable using the risk 
score was significantly greater than with proteinuria (Figure 5B)  
(P = 0.001). In fact, using the presence of proteinuria as a threshold 
led to a lower accuracy (i.e., 0.69) than did the null distribution 
(accuracy, 0.71) (i.e., guessing that all samples survived). In con-
trast, all risk score thresholds greater than 0.0 produced higher 
accuracies than the null distribution.

Robustness of the classifier results
Single gene classifiers. We assessed the strength of predictions from 
simple single gene classifiers, based solely on the expression values 
of the highest ranked and the 100th, the 500th, and the 5,000th 
ranked genes in each training set (Supplemental Figure 3).  
Predictions from single genes, even those that were not near 
the top of the ranked list of genes, were very similar to those 
using the full PCA model. Thus, the risk for graft loss can be 
predicted adequately by any of a great many genes. This is due 
to the highly coordinated changes in expression found in many 
thousands of genes.

Application of the classifier to an independent validation set. We 
assessed the performance of the classifier in an independent 
set of biopsies (n = 48) taken for clinical indication more than  
1 year after transplantation at the University of Minnesota, with 
patient characteristics and clinical and histologic features similar 
to those in the studies described above. This population experi-
enced 11 graft losses and had a median follow-up time of 406 
days. Risk scores were calculated by supplying the classifier built 
from our main dataset with the gene expression values from the 
Minnesota dataset. The relationship of the molecular risk score 
to graft loss, the Kaplan-Meier plots of high- versus low-risk 
groups (defined using the risk threshold in the main dataset), 
and the ROC curve illustrating the tradeoff between sensitivity 
and specificity (Figure 6, A–C) showed results similar to those in 
the original data set. In the univariate analysis in this validation 
set, only the molecular risk score was significantly associated 

with subsequent graft loss (P = 0.0004). Thus, the risk score was 
superior to classic predictors such as IFTA and low GFR.

Application of the classifier to a patient population at low risk of graft 
loss. To assess whether high risk scores always predict risk for 
graft loss, we applied the classifier algorithm (based on late 
biopsies) to a set of biopsies taken within the first year after 
transplantation, which had very little risk of graft loss during 

Figure 2
Molecular risk scores in individual biopsies. We built a molecular clas-
sifier based on 105 kidney transplant biopsies taken for clinical indi-
cations 1 year or more after transplantation and used the result to 
assign a molecular risk score to each biopsy. Biopsies were sorted 
by risk score; each biopsy is represented by 1 triangle. Biopsies from 
patients with subsequent graft loss are indicated in black. Biopsies 
were assigned into high- or low-risk groups, with the threshold deter-
mined by the median risk score.

Figure 3
Kaplan-Meier plots for the two risk groups. Biopsies were separated 
into high- and low-risk groups, as shown in Figure 2. F, failed.
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follow-up in our study (Figure 7). Of 73 early biopsies (<1 year 
after transplantation), 44 (60%) had a risk score above the high-
risk threshold from the late biopsy analysis (sensitivity, 1.00; 
specificity, 0.41; Table 7). However, only 2 of these grafts sub-
sequently failed. Both of these were actually biopsied late in the 
first year, at 273 days and 360 days. Most of the remaining 42 
early biopsies, which were classified as high risk but did not fail 
during the follow-up period, were diagnosed as T cell–mediated 
rejection (TCMR) (n = 8), borderline TCMR (n = 4), polyoma 

virus nephropathy (n = 3), or acute tubular necrosis (n = 21). 
When comparing early and late biopsies with high-risk scores, 
we found differences in diagnostic categories: early biopsies with 
high-risk scores (but low incidence of failure) had mainly acute 
tubular necrosis and TCMR, while late biopsies with high-risk 
scores (and high incidence of failure) were often diagnosed as 
having ABMR or glomerulonephritis (Table 8).

To exclude that the high rate of false-positive predictions in the 
early biopsy group was due to a statistical bias (based on the fact 
that the classifier was built on late biopsies and applied to the 
clinically different group of early biopsies), we built a separate 
classifier on the entire dataset (early and late biopsies). In this 
analysis, the molecular risk score continued to have a high predic-
tive value for graft loss, but the difference between early and late 
biopsies in terms of positive predictive value remained (Table 7).

Thus reversible/treatable early injury and rejection can induce 
the same gene expression changes as the disease processes leading 
to graft loss in the late biopsies, without leading to graft failure.

Discussion
The present study developed a gene expression–based classifier 
to predict kidney allograft failure after a late biopsy (>1 year 
after transplantation) for clinical indications. The molecular risk 
scores were strongly associated with graft loss. Using previously 
annotated transcript sets reflecting major biological events in 
renal transplants, we found that the transcripts used by the clas-
sifier to predict graft failure were those reflecting tissue injury, 
dedifferentiation of the epithelium, and tissue remodeling, but 
not those reflecting inflammation (IFNG effects and T cell or 
macrophage infiltration). The predictive ability of the classifier 
was high, with a sensitivity of 0.83 and a specificity of 0.63 at 
the high/low risk threshold. The gene expression risk score cor-
related with fibrosis and atrophy, interstitial inflammation, and 
glomerulitis but independently predicted graft failure in a mul-

Table 4
Correlation of molecular risk scores with histologic  
and clinical features

Variable Spearman correlation  P
	 coefficient
Time after transplantation –0.005 0.96
Renal function (estimated GFR) –0.54 3.0 × 10–9

Proteinuria 0.30 0.002
Glomerulitis (g score) 0.16 0.10
Transplant glomerulopathy (cg score) 0.15 0.14
Interstitial inflammation (i score) 0.50 4.1 × 10–8

Interstitial fibrosis (ci score) 0.46 7.7 × 10–7

Tubulitis (t score) 0.28 0.004
Tubular atrophy (ct score) 0.49 1 × 10–7

Arteritis (v score) 0.07 0.46
Fibrous intimal thickening (cv score) 0.03 0.75
Arteriolar hyalinosis (ah score) –0.11 0.25
Mesangial matrix (mm score) 0.14 0.17
Peritubular capillaritis (ptc score) 0.13 0.18
PTCML 0.21 0.06

Histologic lesions were graded according to the Banff classification  
(32, 33) as described in Methods.

Figure 4
Relationship between risk score and failure/censoring time. Time to 
event (graft failure, patient death, or end of follow-up) is plotted against 
the molecular risk score for each biopsy. Each biopsy is represented 
by one symbol. Biopsies from patients with subsequent graft loss are 
represented as black triangles; biopsies from patients who died with 
a functioning graft are represented by asterisks. All other biopsies are 
represented by white triangles. Regression lines were drawn sepa-
rately for patients censored for end of study, those censored for patient 
death with a functioning graft, and those with graft loss.
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tivariate analysis. The risk score was validated in an independent 
set of late BFCs.

The risk score is an indicator of active injury, whose significance 
depends on the disease state of the patient. Risk predictions were 
accurate when applied to the late biopsy population, where subse-
quent progression is considerable, but not when applied to early 
biopsies, where the diseases operating have a low risk of progres-
sion when treated. Early after transplantation the diseases causing 
injury are self-limited (acute tubular necrosis) or reversible by ther-
apy (e.g., TCMR), but in late biopsies the diseases causing injury 
are progressive and unresponsive to treatment (ABMR, recurrence 
of primary disease). Thus, the probability of progression after a 
biopsy for clinical indications is conferred both by the presence of 
active injury (the risk score) and by the diseases inducing the active 
injury response and their potential for spontaneous resolution or 
response to therapy. The classifier and the individual genes predict 
risk not in absolute terms but in relation to the diseases or injury 
mechanisms disturbing the kidney and triggering the biopsy.

The transcripts predicting graft loss reflect an ongoing response 
to injury, including epithelial distress and dedifferentiation, with 
reexpression of developmental genes and loss of transcripts asso-
ciated with differentiated epithelium as well as remodeling of the 
matrix. Many of the molecules used by the classifier to predict 
progression to renal failure are already known to be involved in 
responses to injury and play important roles in kidney develop-
ment. For example, nicotinamide N-methyltransferase (NNMT) 
and versican (VCAN), both associated with cell migration in 
cancer (21–24), may represent dedifferentiation and epithelial-
mesenchymal transition. ITGB6 is expressed by renal epithelium 
during stress and injury (25) and activates TGFB1 (26). HAVCR1 
(also known as KIM1) is a well-established feature of the injured 
kidney (27). Interestingly, the collagen genes were not prominent 
in the list, suggesting that the genes predicting graft loss repre-
sent an active response to injury in the epithelium and matrix but 

not fibrogenesis per se. In previous 
analyses, we have performed exten-
sive comparisons between microarray 
results and RT-PCR, which showed 
excellent reproducibility of both 
methods and confirmed the robust-
ness of microarray results (28).

The genes associated with graft 
loss in late biopsies indicate that an 
active ongoing tissue response to 
injury is the final common pathway 
linking mechanisms of inflamma-
tion and noninflammatory disease 
states to parenchymal loss, dysfunc-
tion, and eventual kidney failure. 
The changes in the expression of 
these genes represent a stereotyped 
response of the tissue to injury, a 
structured program. Many tran-
scripts were also found in mouse iso-
grafts, which allowed us to map the 
time-dependent intrinsic responses 
of the nephron to a clearly defined 
and self-limited stress, indicating 
that these genes represent inherently 
reversible injury (29, 30), if the injury 

mechanism is self limited or treatable. The gene list was similar 
to the transcript changes we recently found correlating with GFR 
disturbances in BFCs (31), which also reflect perturbations in the 
parenchyma and are indicators of an ongoing response to injury 
and thus potentially of a reversible epithelial injury repair process. 
This was further corroborated by observing high-risk scores in 
early biopsies from kidneys that did not progress to failure. Thus, 
the transcript changes reflect a perturbation in kidney biology 
that indicates ongoing remodeling and repair but not inevitable 
decline toward failure.

The risk score emerges as an independent predictor in multi-
variate analysis, indicating that transcriptome changes provide 
information beyond that derived from histology, demographics, 
GFR, or proteinuria. A molecularly based test has the potential 
to be more objective than a biopsy read by a pathologist, despite 
the standardization of the Banff criteria, because of intraob-
server variation. In addition, the features of active injury are not 
captured by morphology but are reflected by gene expression 
changes. Thus, the risk score emerges as a more robust predic-
tor of risk in the validation set than the classical factors: atro-
phy and fibrosis, low GFR, and proteinuria. The fact that not all 
grafts with a high-risk score failed, resulting in false positives, 

Table 5
Univariate analysis of features associated with graft loss

Feature Beta r 2 HR P (likelihood ratio)
Molecular risk score 0.84 0.31 2.33 (1.78–3.05) 3.3 × 10–10

Proteinuria 2.63 0.22 13.9 (3.28–58.7) 4.3 × 10–7

GFR –0.048 0.15 0.95 (0.93–0.98) 4.3 × 10–5

Interstitial fibrosis (ci score) 0.74 0.10 2.09 (1.33–3.27) 0.0010
Arteriolar hyalinosis (ah score) –1.29 0.09 0.28 (0.13–0.58) 0.0014
Tubular atrophy (ct score) 0.73 0.08 2.05 (1.28–3.27) 0.0025
PTCML 0.52 0.08 1.66 (1.11–2.48) 0.0091
Mesangial matrix (mm score) 0.46 0.05 1.59 (1.08–2.33) 0.018
Interstitial inflammation (i score) 0.50 0.05 1.65 (1.08–2.53) 0.021
Glomerulitis (g score) 0.44 0.04 1.56 (1.04–2.32) 0.044
Peritubular capillaritis (ptc score) 0.22 0.02 1.25 (0.92–1.69) 0.17
PRA 0.64 0.02 1.89 (0.71–5.02) 0.18
Fibrous intimal thickening (cv score) –0.66 0.02 0.52 (0.21–1.27) 0.18
DSA –0.071 0.05 0.93 (0.40–0.44) 0.30
Transplant glomerulopathy (cg score) 0.18 0.01 1.19 (0.86–1.66) 0.31
C4d staining 0.66 0.02 1.94 (0.52–0.73) 0.35
ABMR (C4d– or C4d+) 0.49 0.02 1.64 (0.80–3.35) 0.17
Time of biopsy after transplantation 0.079 0.002 1.08 (0.79–1.48) 0.62
Arteritis (v score) –0.14 0.001 0.87 (0.38–1.99) 0.73
Tubulitis (t score) 0.063 0.0009 1.06 (0.72–1.58) 0.76

HR, hazard ratio.

Table 6
Multivariate analysis of features associated with graft loss

Feature Beta HR P
Molecular risk score 0.99 2.70 (1.82–4.00) 8.5 × 10–7

PTCML 0.62 1.86 (1.16–2.97) 0.001
Arteriolar hyalinosis  –1.39 0.25 (0.10–0.62) 0.003 
 (ah score)
Proteinuria 1.93 6.91 (1.56–30.56) 0.01
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is not unexpected given the fact that patients were treated after 
the biopsy, resulting in reversal of the injury process in some 
cases. Since we did not include protocol biopsies performed after  
1 year, we do not know whether there is a molecular signature of 
patients at high risk for graft failure in those without symptoms/
signs of ongoing injury.

The superiority of the risk score to the classical features asso-
ciated with progression to renal failure after a biopsy (atrophy, 
fibrosis, low GFR, proteinuria) indicates that these actually pre-
dict progression because they are correlated with an active injury 
response in biopsies for clinical indications. Atrophy, fibrosis, and 
low GFR indicate nephron loss, but the risk score subsumes this 
risk because it actually reflects nephrons in distress. This may offer 
hope that progression to renal failure is not inevitable if we can 
arrest the diseases causing progression. In other words, we find 
evidence here not of an overwhelming “point of no return” but of 
active injury that could be reversed if we find therapies that arrest 
the cause of the active injury.

Methods
Patient population, specimens, and data collection. Written informed con-
sent was obtained from all study patients. The study was approved by 
the institutional review boards of the University of Alberta (issue 5299), 
the University of Illinois, Chicago (protocol 2006-0544), the University 
of Minnesota (protocol HSC#0606 M87646), and the Hennepin County 
Medical Center (protocol HSR#06-2670). All consenting renal transplant 
patients undergoing BFCs as standard of care between September 2004 
and October 2007 at the University of Alberta or between November 2006 

and February 2007 at the University of Illinois were included in the analy-
sis. In addition to our cross-validation analysis of the Edmonton dataset, 
biopsies obtained from Minnesota between September 2006 and Septem-
ber 2007 were used as an independent validation set.

Biopsies were obtained under ultrasound guidance by using spring-
loaded needles (ASAP Automatic Biopsy, Microvasive). In addition to 
the cores required for standard histopathology, we collected one core for 
gene expression studies. The biopsy sample processing was performed as 
described in detail in our previous study (14).

Histopathologic diagnosis. All biopsies were assessed using the updated 
Banff 07 criteria (32, 33) by a pathologist who was blinded to the results 
of molecular studies. All biopsies had adequate cortical tissue for analy-
sis by Banff criteria, with the exception of 2 biopsies that had no arteries. 
Diagnostic groups included TCMR, borderline TCMR, ABMR, IFTA not 
otherwise specified, glomerulonephritis, acute tubular necrosis, and BK 
virus nephropathy. In addition to ABMR with positive C4d staining (as 
specified in the Banff classification), we included the emerging category of 
C4d-negative ABMR (published in ref. 1), which is defined by the presence 
of circulating donor-specific HLA antibodies and evidence of microcircula-
tion changes in the biopsy (presence of glomerulitis, transplant glomeru-
lopathy, peritubular capillaritis, PTCML).

PBTs. PBTs represent biological processes during rejection and other 
types of injury in renal allografts. They serve as an annotation tool, with 
which genes identified in our analysis can be assigned to biological pro-
cesses relevant to transplantation. PBTs were derived previously from 
mouse transplant models and in vitro human cell lines (15, 29, 30, 34–40). 
The definitions and algorithms for the PBTs referenced in the tables can 
be found in Supplemental Table 2. The PBTs included IFN-γ–inducible 

Figure 5
ROC curves of molecular risk score compared with clinical and histologic features. (A) To assess the sensitivity and specificity of the 
molecular classifier compared with that of clinical features, we compared the ROC curve derived from the molecular risk score with variables 
significantly associated with graft loss in a multivariate analysis. AUC is indicated for each parameter. (B) Accuracy (total correct predic-
tions/total samples) for varying risk score thresholds for predicting graft failure. The dashed line represents the accuracy when the pres-
ence of proteinuria was used as the single threshold for predicting failure. The dotted line is the accuracy when all samples are predicted 
to survive. ah, arteriolar hyalinosis.
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transcripts: GRIT1 and GRIT2 (34); cytotoxic T cell–associated transcripts: 
CAT1 (15) and QCAT (35); NK cell–associated transcripts: NKST (36); clas-
sical macrophage activation transcripts: IMAT (37); alternative macrophage 
activation transcripts: AMAT1 (38) and AMAT (IL-4–inducible transcripts); 
B cell–associated transcripts: BAT (39); immunoglobulin transcripts: IGT 
(39); endothelial transcripts: ENDAT (40); injury and repair transcripts: 
IRIT subsets IRIT(E), IRIT(I), and IRIT(L) (29); transcripts associated with 
severe tissue injury: GST and CISTS (38); kidney parenchymal transcripts: 
KT1 and KT2 (30); and transcript sets reflecting fibroblast activation 
(FIBET and FIBTG) or TGF-β activation (TGFB[1] and TGFB[2]).

Data analysis. Because we aimed to develop a biopsy-based risk predic-
tion method, graft survival was assessed as time between biopsy and graft 
failure/censoring, not time between transplantation and failure/censor-
ing. Patients were censored for the end of study (July 26, 2009), death 
with functioning graft, or loss to follow-up. Graft failure was defined as 
return to dialysis (n = 30).

Microarray data files were preprocessed using robust multichip averag-
ing (RMA) in Bioconductor and subjected to variance-based filtering (41) 
as described previously (34). Nonspecific IQR filtering was used to elimi-
nate probesets with low variation across the dataset. 11,500 of the original 

Figure 6
Performance of the classifier in an independent validation set. Based on the classifier results derived from the 105 biopsies in our dataset, we 
calculated risk scores for each sample in an independent set of biopsies (n = 48) with similar clinical and histologic features. (A) Risk scores 
in relation to graft loss in the validation set, showing the risk threshold derived from the main (n = 105) dataset. (B) Kaplan-Meier plots of the 
2 risk groups in the validation set, using the threshold shown in Figure 6A. (C) ROC curves illustrating sensitivity/specificity of the risk scores 
in the validation set.

Figure 7
Molecular risk scores in biopsies taken within 1 year after transplanta-
tion. The molecular risk score has high predictive value in patients at risk 
of graft loss. To assess whether the associated gene expression chang-
es are unique to the population at risk, we applied the classifier results to 
a set of biopsies taken within the first year after transplantation.
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54,675 probesets passed this filtering step and were retained for further 
analysis. Expression and phenotype data, as well the CEL files, are avail-
able at the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.
gov/geo/; accession number GSE21374).

Classifier results were obtained using a multiple 10-fold cross-valida-
tion method (19). In each iteration, the data were divided into 10 roughly 
equal-sized subsamples. Nine of the subsamples were used to predict the 
risk scores of the remaining “left-out” subsample. This procedure was 
repeated 10 times, each time using a different left-out subsample, so 
that all biopsies received a single predicted risk score. Within each of the  
10 folds of this algorithm, the genes used in the classifier were reselected 
based only on those samples not being left out, i.e., only using the train-
ing set for that left-out subsample. The supervised PCA method uses a 
shrinkage algorithm (20, 42), ordering the selected genes by their Cox 
regression P values within each training set. The shrinkage procedure 
itself selects for genes whose expression is most stable within samples 
from the same phenotypic class (e.g., within failures and within non-fail-
ures). One of the desirable consequences of this method is that many 
genes with similar P values, in terms of their association with 
graft loss, can be eliminated in such a way as to retain those with 
the most informative predictive content. No fixed P value cutoff 
is used. In each training set, the shrinkage threshold (equal to the 
number of genes used) was chosen by maximizing the predictive 
accuracy in that particular training set. This entire procedure was 
repeated 100 times (each time using a different random 10-fold 
data split, following the method used in ref. 19), and each biop-
sy’s average risk score over all 100 iterations was recorded. Based 
on the average risk score, patients were assigned to one of 2 risk 
groups (high and low), using the median across all biopsies as the 
cutoff between both groups. In the case of multiple biopsies from 
one patient, only the first biopsy was used. A diagram illustrat-
ing the process of building the classifier and validation steps is 
shown in Supplemental Figure 1.

Single gene classifiers were assessed by the same cross-validation 
method. In each training set, the nth ranked gene (n = 1, n = 100,  
n = 500, or 5,000) was determined, and its expression value in the cor-
responding test set was used as the risk score. Since a different nth 
ranked gene might occur in every training/test set split, all expres-
sion values were first standardized by subtracting that gene’s mean 
expression value and dividing by the gene’s standard deviation.

The full classifier derived from the Edmonton dataset was also 
applied to the gene expression values of an independent validation 
set from Minnesota, and risk scores were assigned.

Univariate associations between gene expres-
sion and graft survival were assessed by Cox 
regression analysis (P value cutoff = 0.0001). 
Multivariate regressions using the molecular risk 
score, pathology lesions, and clinical variables 
were built using a forward stepwise model using 
all features that reached significance (P < 0.05) 
in the univariate analysis. False discovery rates 
were estimated using the R package fdrtool (43). 
Unless otherwise specified, a P value of 0.05 was 
considered statistically significant.
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Table 7
Sensitivity and specificity of classifiers built on late biopsies only or early and  
late biopsies combinedA

 Sensitivity Specificity Accuracy PPV NPV
Classifier built on late biopsies only
Applied to early biopsies 1.00 0.41 0.42 0.05 1.00
Applied to late biopsies 0.83 0.63 0.69 0.47 0.90
Classifier built on early and late biopsies
Applied to all biopsies 0.90 0.58 0.64 0.32 0.97
Applied to early biopsies 1.00 0.61 0.62 0.07 1.00
Applied to late biopsies 0.90 0.56 0.66 0.46 0.93

AThe classifier was built either on late biopsies only or all biopsies (early plus late). For the calcu-
lations in this table, the threshold used for assigning a guess of failure versus non-failure was the 
median risk score.

Table 8
Diagnostic breakdown of high-risk biopsies based  
on the late-biopsy classifier

DiagnosisA No. of biopsies  No. of biopsies 
 <1 yr after Tx >1 yr after Tx
 (total n = 44;  (total n = 52; 
 2 failures) 25 failures)
TCMR 8 5 (1)
Borderline TCMR 4 2 (1)
C4d– antibody–mediated rejection 0 10 (6)
C4d+ antibody–mediated rejection 1 9 (4)
Transplant glomerulopathy 0 3 (1)
Mixed TCMR and ABMR 1 (1) 5 (2)
Glomerulonephritis or recurrent disease 1 9 (4)
Isolated v lesion 2 1 (1)
BK virus nephropathy or probable BK 4 (1) 0
Calcineurin inhibitor toxicity 1 2 (2)
IFTA, not otherwise specified 0 3 (2)
Acute tubular necrosis 21 0
Miscellaneous other 1 3 (1)

ADiagnoses were defined according to the Banff classification, as described in 
Methods. Numbers in parenthesis indicate the number of failed grafts in the cat-
egory. Tx, transplantation.



research article

1872	 The	Journal	of	Clinical	Investigation   http://www.jci.org   Volume 120   Number 6   June 2010

 1. Einecke G, et al. Antibody-mediated microcirculation 
injury is the major cause of late kidney transplant 
failure. Am J Transplant. 2009;9(11):2520–2531.

 2. Gaber LW, et al. Correlation between Banff classifi-
cation, acute renal rejection scores and reversal of 
rejection. Kidney Int. 1996;49(2):481–487.

 3. Colvin RB, et al. Evaluation of pathologic criteria 
for acute renal allograft rejection: reproducibility, 
sensitivity, and clinical correlation. J Am Soc Nephrol. 
1997;8(12):1930–1941.

 4. Haas M, Kraus ES, Samaniego-Picota M, Racusen 
LC, Ni W, Eustace JA. Acute renal allograft rejec-
tion with intimal arteritis: histologic predictors of 
response to therapy and graft survival. Kidney Int. 
2002;61(4):1516–1526.

 5. Agodoa L, et al. Assessment of structure and function 
in progressive renal disease. Kidney Int Suppl. 1997; 
63:S144–S150.

 6. Bohle A, Grund KE, Mackensen S, Tolon M. Correla-
tions between renal interstitium and level of serum 
creatinine. Morphometric investigations of biopsies 
in perimembranous glomerulonephritis. Virchows 
Arch A Pathol Anat Histol. 1977;373(1):15–22.

 7. Bohle A, Christ H, Grund KE, Mackensen S. The 
role of the interstitium of the renal cortex in renal 
disease. Contrib Nephrol. 1979;16:109–114.

 8. Schainuck LI, Striker GE, Cutler RE, Benditt EP. 
Structural-functional correlations in renal disease. 
II. The correlations. Hum Pathol. 1970;1(4):631–641.

 9. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, 
Allen RD, Chapman JR. The natural history of 
chronic allograft nephropathy. N Engl J Med. 2003; 
349(24):2326–2333.

 10. El Zoghby ZM, et al. Identifying specific causes of kid-
ney allograft loss. Am J Transplant. 2009;9(3):527–535.

 11. Rudnicki M, et al. Hypoxia response and VEGF-A 
expression in human proximal tubular epithelial 
cells in stable and progressive renal disease. Lab 
Invest. 2009;89(3):337–346.

 12. Sarwal M, et al. Molecular heterogeneity in acute renal 
allograft rejection identified by DNA microarray pro-
filing. N Engl J Med. 2003;349(2):125–138.

 13. Flechner SM, et al. Kidney transplant rejection 
and tissue injury by gene profiling of biopsies and 
peripheral blood lymphocytes. Am J Transplant. 
2004;4(9):1475–1489.

 14. Mueller TF, et al. Microarray analysis of rejection 
in human kidney transplants using pathogen-
esis-based transcript sets. Am J Transplant. 2007; 
7(12):2712–2722.

 15. Einecke G, et al. Expression of CTL associated 
transcripts precedes the development of tubuli-
tis in T-cell mediated kidney graft rejection. Am J 
Transplant. 2005;5(8):1827–1836.

 16. Strehlau J, et al. Quantitative detection of immune 

activation transcripts as a diagnostic tool in kid-
ney transplantation. Proc Natl Acad Sci U S A. 
1997;94(2):695–700.

 17. Smythe GK. Limma: linear models for microarray 
data. In Gentlemen R, Carey V, Dudoit S, Irizarry R, 
Huber W, eds. Bioinformatics and Computational Biol-
ogy Solutions using R and Bioconductor. New York, New 
York, USA: Springer Publishing; 2005:398–420.

 18. Reeve J, et al. Diagnosing rejection in renal trans-
plants: a comparison of molecular- and histopa-
thology-based approaches. Am J Transplant. 2009; 
9(8):1802–1810.

 19. Kim JH. Estimating classification error rate: Repeat-
ed cross-validation, repeated hold-out and bootstrap. 
Comput Stat Data Anal. 2009;53(11):3735–3745.

 20. Bair E, Tibshirani R. Semi-supervised methods to 
predict patient survival from gene expression data. 
PloS Biology. 2004;2(4):E108.

 21. Igarashi P, Shao X, McNally BT, Hiesberger T. Roles 
of HNF-1beta in kidney development and congenital 
cystic diseases. Kidney Int. 2005;68(5):1944–1947.

 22. Wight TN, Merrilees MJ. Proteoglycans in athero-
sclerosis and restenosis: key roles for versican. Circ 
Res. 2004;94(9):1158–1167.

 23. Kinsella MG, Bressler SL, Wight TN. The regu-
lated synthesis of versican, decorin, and biglycan: 
extracellular matrix proteoglycans that influence 
cellular phenotype. Crit Rev Eukaryot Gene Expr. 2004; 
14(3):203–234.

 24. Wu Y, Siadaty MS, Berens ME, Hampton GM, Theo-
dorescu D. Overlapping gene expression profiles of 
cell migration and tumor invasion in human blad-
der cancer identify metallothionein 1E and nicotin-
amide N-methyltransferase as novel regulators of 
cell migration. Oncogene. 2008;27(52):6679–6689.

 25. Trevillian P, Paul H, Millar E, Hibberd A, Agrez MV. 
A(v)beta(6) integrin expression in diseased and trans-
planted kidneys. Kidney Int. 2004;66(4):1423–1433.

 26. Wipff PJ, Hinz B. Integrins and the activation of latent 
transforming growth factor beta 1 - An intimate rela-
tionship. Eur J Cell Biol. 2008;87(8–9):601–615.

 27. Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a 
specific and sensitive biomarker of kidney injury. 
Scand J Clin Lab Invest Suppl. 2008;241:78–83.

 28. Allanach K, et al. Comparing microarray versus RT-
PCR assessment of renal allograft biopsies: similar 
performance despite different dynamic ranges. Am 
J Transplant. 2008;8(5):1006–1015.

 29. Famulski KS, et al. Transcriptome analysis reveals 
heterogeneity in the injury response of kidney trans-
plants. Am J Transplant. 2007;7(11):2483–2495.

 30. Einecke G, Broderick G, Sis B, Halloran PF. Early 
loss of renal transcripts in kidney allografts: rela-
tionship to the development of histologic lesions 
and alloimmune effector mechanisms. Am J Trans-

plant. 2007;7(5):1121–1130.
 31. Bunnag S, et al. Molecular correlates of renal func-

tion in human kidney transplant biopsies. J Am Soc 
Nephrol. 2009;20(5):1149–1160.

 32. Racusen LC, et al. The Banff 97 working classifica-
tion of renal allograft pathology. Kidney Int. 1999; 
55(2):713–723.

 33. Solez K, et al. Banff 07 classification of renal 
allograft pathology: updates and future directions. 
Am J Transplant. 2008;8(4):753–760.

 34. Famulski KS, et al. Changes in the transcriptome 
in allograft rejection: IFN-γ induced transcripts 
in mouse kidney allografts. Am J Transplant. 2006; 
6(6):1342–1354.

 35. Hidalgo LG, et al. The transcriptome of human 
cytotoxic T cells: measuring the burden of CTL-
associated transcripts in human kidney trans-
plants. Am J Transplant. 2008;8(3):637–646.

 36. Hidalgo LG, Einecke G, Allanach K, Halloran PF. 
The transcriptome of human cytotoxic T cells: 
similarities and disparities among allostimulated 
CD4(+) CTL, CD8(+) CTL and NK cells. Am J Trans-
plant. 2008;8(3):627–636.

 37. Einecke G, Mengel M, Hidalgo LG, Allanach K, 
Famulski KS, Halloran PF. The early course of renal 
allograft rejection: Defining the time when rejec-
tion begins. Am J Transplant. 2009;9(3):483–493.

 38. Famulski KS, Sis B, Billesberger L, Halloran PF. 
Interferon-gamma and donor MHC class I con-
trol alternative macrophage activation and activin 
expression in rejecting kidney allografts: a shift 
in the Th1-Th2 paradigm. Am J Transplant. 2008; 
8(3):547–556.

 39. Einecke G, et al. Expression of B cell and immuno-
globulin transcripts is a feature of inflammation in 
late allografts. Am J Transplant. 2008;8(7):1434–1443.

 40. Sis B, Jhangri G, Bunnag S, Allanach K, Kaplan B, 
Halloran PF. Endothelial gene expression in kidney 
transplants with alloantibody indicates antibody-
mediated damage despite lack of C4d staining. Am 
J Transplant. 2009;9(10):2312–2323.

 41. Scholtens D, von Heydebreck A. Analysis of dif-
ferential gene expression studies. In: Gentleman R, 
Carey VJ, Huber W, Irizarray R, Dudoit S, eds. Sta-
tistics for Biology and Health: Bioinformatics and Com-
putational Biology Solutions Using R and Bioconductor. 
New York, New York, USA: Springer Publishing; 
2005:229–248.

 42. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diag-
nosis of multiple cancer types by shrunken cen-
troids of gene expression. Proc Natl Acad Sci U S A. 
2002;99(10):6567–6572.

 43. Strimmer K. fdrtool: a versatile R package for esti-
mating local and tail area-based false discovery 
rates. Bioinformatics. 2008;24(12):1461–1462.


