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of Cre-expressing mice that express this 
enzyme in a strictly β cell–specific man-
ner will be essential. Indeed, considering 
that efforts are currently underway to gen-
erate conditional alleles for virtually all 
genes, the Cre-loxP strategy will be a cor-
nerstone technology for understanding 
energy homeostasis in the mouse. How-
ever, certain lines of mice, including the 
B6.Cg-Tg(Ins2-Cre)25Mgn/J animals we 
generated nearly ten years ago (9) and that 
were used by Covey et al., need to be sup-
plemented by more robust models that are 
free of some of the flaws that have been so 
aptly demonstrated here and elsewhere.
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Role for HLA in susceptibility  
to infectious mononucleosis

Paul J. Farrell
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Factors involved in determining whether infectious mononucleosis occurs 
after primary EBV infection may include age, dose of virus received, and 
various genetic markers. A study by McAulay and colleagues reported in 
this issue of the JCI shows that the presence of certain HLA class I alleles 
correlates with the incidence and severity of infectious mononucleosis (see 
the related article beginning on page 3042). These same HLA alleles are also 
risk factors for EBV-associated Hodgkin lymphoma (HL), supporting recent 
epidemiology that indicates that a history of infectious mononucleosis pre-
disposes to HL. Recent studies suggest that an EBV vaccine might help to 
prevent infectious mononucleosis, and further development of this should 
now be considered.

Nonstandard abbreviations used: EBNA, Epstein-
Barr nuclear antigen; HL, Hodgkin lymphoma; IM, 
infectious mononucleosis; LMP, latent viral protein.
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Over 90% of the world’s population 
become infected by EBV in their lifetime 
(1), and EBV is one of the best understood 
herpesviruses at the molecular level, but 
there are still some remarkable gaps in 
our knowledge about the details of natu-
ral EBV infection. Primary EBV infection 

was shown many years ago to be the main 
cause of infectious mononucleosis (IM). 
EBV mainly infects B lymphocytes, and the 
current model of in vivo infection (1–3) 
suggests that the purpose of the various 
Epstein-Barr nuclear antigen (EBNA) and 
latent viral protein (LMP) genes in EBV is 
to ensure survival of infected B cells so that 
they can transit into the long-lived mem-
ory B cell population, in which the virus 
is thought to persist. In this respect, the 
viral strategy is analogous to that of other 
herpesviruses, which are characterized by 
persistence in a latent state in a certain cell 
type for the lifetime of the infected host. 
Replicating EBV can be found in antibody-
producing plasma cells (4), which result 
from the end-stage of B cell differentiation, 
indicating that reactivation of EBV and 
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the production of new infectious viruses 
to complete the life cycle seem to occur in 
response to the activation of memory B 
cells in response to antigen.

The symptoms of IM are caused by the 
immune response to the infection (5). 
Although EBV infects mainly B cells and 
can cause their proliferation, the excessive 
number of lymphocytes observed, which 
account for mononucleosis, are mostly 
T cells. The specificity of these T cells is 
largely directed toward EBV proteins pro-
duced in the infected B cells. Cytokines 
produced during the chaotic immune 
response occurring in IM produce the char-
acteristic fever, malaise, and other inflam-
matory symptoms. The disease subsides 
as the immune response adjusts, eventu-
ally to become more like that of a normal 
“silently” infected person. The EBV then 
persists in a state in which there is very 
little viral gene expression so that it can 
escape immune surveillance. However, we 
still don’t know why only about 30% of 
adults develop IM following EBV infection 
whereas the majority seroconvert without 
noticeable symptoms.

Most people are infected with EBV as 
young children and have no noticeable 
symptoms; it is only in developed countries 
with Western hygiene standards that pri-
mary infection is sometimes delayed until 
adolescence or adulthood, at which time 
IM may develop. A classic explanation for 
this observation has been that the immune 
systems of adults can respond differently 
from those of young children (1), but alter-
native theories propose that development 
of IM is mainly a consequence of the viral 
dose received at the time of infection or that 
there might be a genetic predisposition in 
some people to developing IM in response 
to EBV infection (1). Since the virus is 
transmitted in saliva, it is easy to imagine 
that the dose of virus received when a baby 
shares a spoon with its mother or is kissed 
by a parent might be less than that received 
by a teenager kissing in a nightclub.

The great majority of cases of IM resolve 
naturally and, like people infected asymp-
tomatically, these individuals then carry 
EBV for the rest of their lives, although it 
is now clear that some physiological differ-
ences exist after IM resolution. Expression 
of the IL-15 receptor on all peripheral T 
and NK cells is lost in acute IM and it can 
remain undetectable for many years (6). 
Also, a history of clinically diagnosed IM 
substantially increases the risk of develop-
ing EBV-positive Hodgkin lymphoma (HL) 

(7–9). Thus, IM may not be the minor dis-
ease that we usually tend to consider it. In 
approximately 30% of all cases of HL, EBV 
is present within malignant Reed-Stern-
berg cells, and some of these cells strongly 
express transforming viral LMPs; therefore 
it seems clear that the virus is actively con-
tributing to some cases of HL (10). EBV is 
also etiologically linked to various other 
types of cancer (e.g., nasopharyngeal car-
cinoma, the African form of Burkitt lym-
phoma, some transplant- and AIDS-related 
lymphomas, and a small fraction of gastric 
carcinomas; ref. 1), but these cancers do not 
have any known link to a history of IM.

Genetic predisposition to IM
In this issue of the JCI, McAulay and col-
leagues examine the relationship between 
natural variation in genetic markers in the 
HLA class I locus, which influences many 
aspects of the immune response, and the 
frequency of IM (11). Previous reports had 
demonstrated an association between cer-
tain HLA class I alleles and EBV-positive 
HL (12, 13). In the current study, McAulay 
et al. found that these same alleles were 
significantly more frequent in IM patients 
than in asymptomatic EBV-seropositive or 
EBV-seronegative individuals. The individ-
uals with IM and possessing these associ-
ated HLA alleles also had lower lymphocyte 
but higher neutrophil counts, higher EBV 
loads, and milder IM symptoms than indi-
viduals not carrying these alleles (11).

Additional forms of genetic predispo-
sition to IM have been described previ-
ously. Natural variation in expression 
of cytokines or their receptors can alter 
cytokine responses, and individuals that 
produce low levels of IL-10 have been asso-
ciated with susceptibility to EBV infection 
(14, 15). Also, variation in the IL-1 com-
plex has been linked to EBV seronegativity 
(16). The new data presented in this issue 
by McAulay et al. (11) clearly show a ten-
dency for certain HLA alleles to be linked 
to IM and indicate that genetic variation 
in T cell responses influences the outcome 
of primary EBV infection and the level of 
viral persistence. Since HLA class I deter-
mines the efficiency of the presentation of 
viral peptides to T cells, it is easy to envis-
age how this genetic variation might affect 
the immune response to EBV infection 
although the exact details of how these 
particular alleles affect immune response 
to EBV are not yet known. A suboptimal 
T cell response to virus during IM could 
result in a higher level of viral persistence in 

B cells, thus increasing the chance of EBV 
infection of these cells and subsequent sur-
vival of abnormal B cells that have malig-
nant potential. The fact that the same HLA 
class I alleles reported here to influence the 
frequency of IM have also been linked to 
EBV-positive HL suggests a genetic basis 
for the increased risk of EBV-positive HL 
reported in individuals that have suffered 
from IM (12, 13). A mechanism by which 
EBV could contribute to the development 
of HL has been indicated by recent results 
demonstrating that the EBV LMP2A pro-
tein allows survival of EBV-infected germi-
nal center B cells that have otherwise del-
eterious somatic hypermutation of their 
immunoglobulin genes (3) and a report 
of the high frequency of such “crippled” 
immunoglobulin genes present in EBV-
positive HL (17).

It is possible that naturally occurring EBV 
strain differences might also play a role in 
determining whether IM arises upon pri-
mary infection. There are 2 EBV types 
(types 1 and 2), which are distinguished by 
substantial variations in the sequence of 
the EBNA2 gene. A previous report from 
this same research group provided some 
evidence that type 1 EBV strains are linked 
to IM (18); however, another investigation 
(19) concluded that EBV type 1 and type 2  
incidence in IM patients was broadly in 
line with infection prevalence in the gen-
eral population. This second study also 
examined additional strain variation and 
concluded that the multiple strains detect-
able within many EBV carriers were prob-
ably acquired at the time of initial infection, 
implying that infection protects against 
subsequent viral challenge. This latter point 
is significant for future vaccine design.

An EBV vaccine to prevent IM
Experience with other herpesvirus vaccines 
indicates that it is unlikely that primary 
EBV infection could be completely pre-
vented, and the lack of a convenient ani-
mal model for EBV (it only infects humans 
and a few closely related primates) has 
meant that the most useful information 
has come from a limited number of phase 
I/II clinical trials in humans. The obvious 
immunogen is the EBV gp350 protein, 
which is a major target for antibodies that 
neutralize EBV infection, and almost all 
studies have focused on this protein. The 
data reported to date suggest that a gp350 
vaccine administered to a population of 
EBV-negative volunteers (ages 18–37) who 
were then monitored for IM and serologi-



commentaries

2758	 The Journal of Clinical Investigation      http://www.jci.org      Volume 117      Number 10      October 2007

cally assessed for EBV infection for 3 years 
had little effect on the frequency of silent 
seroconversion but greatly reduced the 
frequency of IM (20). This is an important 
result because it suggests that a vaccine to 
prevent IM might actually work and also 
because it points the way to the most sen-
sible vaccine strategy, namely to try to pre-
vent IM but not the normal silent infection 
with EBV. One can easily envisage how a 
partially effective gp350 vaccine might pre-
vent IM but not silent EBV infection — if a 
high viral dose proves to be required for the 
development of IM, the immune response 
induced by the vaccine might be able to 
neutralize most of this virus (preventing 
IM) but not completely protect against 
infection. There is therefore an increasing 
case for further efforts to develop an EBV 
vaccine that could be given to EBV-serone-
gative teenagers or adults to try to prevent 
the development of IM.
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Overstaying their welcome: defective CX3CR1 
microglia eyed in macular degeneration
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Age-related macular degeneration (AMD), the most common cause of blind-
ness in the elderly, is characterized by degeneration of the macula and can 
lead to loss of fine color vision. Alterations in inflammatory and immune 
system pathways, which arise from genetic differences, predispose indi-
viduals to AMD. Yet the mechanism of disease progression with respect to 
inflammation is not fully understood. In this issue of the JCI, the study by 
Combadière and colleagues shows that CX3C chemokine receptor 1–defi-
cient (CX3CR1-deficient) mice have abnormal microglia that accumulate 
beneath the retina and contribute to the progression of AMD (see the related 
article beginning on page 2920).

Nonstandard abbreviations used: AMD, age-related 
macular degeneration; Ccl2, CC chemokine ligand 2; 
Ccr2, CC chemokine receptor 2; CX3CL1, CX3C  
chemokine ligand 1; CX3CR1, CX3C chemokine  
receptor 1; RPE, retinal pigment epithelium.
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Age-related macular degeneration (AMD), 
a degenerative disease of the retina, is the 
most common cause of visual impairment 
in the elderly in the developed world (1). The 
prevalence of AMD is expected to increase as 
the population ages. AMD is characterized 
by degeneration of the macula, an area in 
the central retina with the highest concen-

tration of cones that is responsible for high-
acuity and color vision (Figure 1). Damage 
to the macula can cause profound loss of 
fine vision (Figure 1A). Genetic factors iden-
tified for AMD risk involve regulation of the 
inflammatory, complement, and chemokine 
pathways, including the fractalkine recep-
tor CX3C chemokine receptor 1 (CX3CR1) 
(2). CX3CR1 is expressed in microglia, the 
resident macrophages in the CNS, and the 
retina (3, 4) and mediates migration and 
adhesion of these cells in response to CX3C 
chemokine ligand 1 (CX3CL1) (5).

In this issue of the JCI, a new study by 
Combadière et al. (6) confirmed that in 
humans, the CX3CR1 M280 allele increases 
the risk of human AMD and that microglia 
isolated from these individuals migrate 
defectively. The authors also showed that in 


