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Drugs known as beta blockers, which antagonize the β-adrenergic receptor 
(β-AR), are an important component of the treatment regimen for chronic 
heart failure (HF). However, a significant body of evidence indicates that 
genetic heterogeneity at the level of the β1-AR may be a factor in explaining 
the variable responses of HF patients to beta blockade. In this issue of the 
JCI, Rochais et al. describe how a single amino acid change in β1-AR alters 
its structural conformation and improves its functional response to carve-
dilol, a beta blocker currently used in the treatment of HF (see the related 
article beginning on page 229). This may explain why some HF patients 
have better responses not only to carvedilol but to certain other beta block-
ers as well. The data greatly enhance our mechanistic understanding of 
myocardial adrenergic signaling and support the development of “tailored” 
or “personalized” medicine, in which specific therapies could be prescribed 
based on a patient’s genotype.

Chronic heart failure (HF) poses a major 
public health problem in this country, 
primarily due to the increasing propor-
tion of our society surviving to the sev-
enth and eighth decades of life and to 
improved treatment of acute ischemic 
cardiac events, resulting in more survi-

vors who develop cardiac dysfunction. 
The group of drugs known as beta block-
ers block the effects of catecholamines, 
such as epinephrine and norepinephrine, 
on the body’s β-adrenergic receptors 
(β-ARs), slowing nerve impulses travel-
ing through the heart and reducing the 
heart’s workload. While β-AR antago-
nists have become a mainstay of HF ther-
apy, the most recent guidelines from the 
American College of Cardiology and the 
American Heart Association acknowledge 
that there are unresolved issues concern-
ing the use of these drugs for the treat-
ment of HF (1).

β1-AR polymorphisms and  
cardiac phenotype
The β-ARs are members of the G protein–
coupled receptor (GPCR) superfamily, 
which consists of over 700 genes that are 
the targets of more than 50% of the drugs 
in clinical practice (2). There are 3 known 
types of β-ARs, β1, β2, and β3. The β1-ARs are 
located mainly in the heart, kidney, and adi-
pose tissue. The β2-ARs are located mainly 
in the heart, lung, gastrointestinal tract, 
liver, pancreas, and skeletal muscle. The role 
and location of β3-ARs are less well defined. 
When stimulated by agonists, β-ARs  
primarily activate heterotrimeric guanine 
nucleotide–binding (G) proteins of the Gs 
family, causing dissociation of Gα-GTP and 
Gβγ subunits. The G proteins transduce 
intracellular signaling pathways via adeny-
lyl cyclase (AC) activation, and this results 
in increased intracellular cAMP levels (3). 
This signaling cascade ultimately leads to 
positive regulatory input to the myocardial 
contractile apparatus. Importantly, β-ARs 
present on cardiomyocytes represent the 
most powerful means of enhancing the 
contractile performance of the heart.

The predominant β-AR subtypes of func-
tional consequence to cardiac physiology 
are β1-AR and β2-AR, both of which have 
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well-documented polymorphisms that 
exist in human populations. The coding 
region of the gene encoding the β1-AR, 
located on chromosome 10q24-26, con-
tains 2 known SNPs resulting in amino 
acid substitutions. At position 49 in the 
extracellular amino terminus of the recep-
tor, a serine is substituted by a glycine (Ser-
49Gly) with an allele frequency of 0.87 and 
0.13, respectively (4). At position 389 in 
the intracellular carboxy terminus in the 

proximity of the seventh transmembrane 
spanning segment, a glycine or arginine 
can be found at an allele frequency of 0.25 
and 0.75, respectively (4). These polymor-
phic variants of the β1-AR appear to have 
significant cardiovascular phenotypic 
consequences. For example, Ranade et al. 
found a significant functional association 
between the Ser49Gly polymorphism and 
resting heart rate, in which Gly49 homozy-
gotes had the lowest heart rate, and each 

Ser49 allele increased the basal heart rate in 
an additive model (5). The Arg389 variant 
appears to be linked with HF in both clini-
cal outcomes and response to therapy (6).

More specifically, the Arg389Gly polymor-
phism lies within the putative Gs-binding 
domain of the β1-AR (Figure 1), and consis-
tent with this localization, previous in vitro 
studies in fibroblast cell lines transiently 
transfected with the Arg389 β1-AR have dem-
onstrated enhanced receptor-Gs coupling as 

Figure 1
The effect of the β1-AR Gly389Arg polymorphism on signal transduction and beta blockade by carvedilol. The Gly389Arg polymorphism of the 
β1-AR occurs in the region between the seventh transmembrane domain and the intracellular tail of the receptor (R and G correspond to arginine 
and glycine, respectively, at position 389 of the receptor). This highly conserved region is putatively associated with coupling to the Gs protein. 
The change of the amino acid residue at position 389 of the β1-AR from the polar, basic arginine (upper 3 panels) to the small, nonpolar glycine 
(lower 3 panels) may result in a modified structure that could alter receptor-Gs interaction. This region of the cytoplasmic tail of the receptor 
may participate in regulating the affinity of the receptor-Gs interaction. This could potentially explain the differences in receptor-Gs coupling and 
cAMP production associated with the Arg389 β1-AR variant as compared with the Gly389 β1-AR variant reported previously (7, 8). Under basal 
conditions, the Arg389 variant has been associated with increased cAMP production, which is markedly augmented as compared with the Gly389 
variant following agonist stimulation (7). This effect could also be attributed to a more favorable structural environment for interaction with Gs. 
Carvedilol treatment induces a conformational change resulting in the intracellular tail of the receptor being positioned more closely to the third 
intracellular loop; this inverse agonism of the receptor in theory would lead to decreased Gs coupling and reduced cAMP accumulation. Both 
variants demonstrated inverse agonist properties in response to carvedilol; however, the effect was increased 2.5-fold in the Arg389 variant, 
apparently due to conformation of the Arg389 structure in the presence of the ligand as observed by Rochais et al. in this issue of the JCI (14).
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measured by 35S-GTP binding and slightly 
increased basal and markedly increased 
agonist-induced AC activity as compared 
with Gly389 β1-AR–transfected fibroblasts 
(7). Furthermore, in a study of transgenic 
mice with cardiac-specific overexpression 
of Arg389Gly β1-AR variants, Akhter and 
colleagues demonstrated that not only does 
Arg389 β1-AR lead to increased myocardial 
signaling properties, but it also confers car-
dioprotection following myocardial ischemia 
and reperfusion injury (8). This may involve 
the upregulation of GPCR kinase 2 (GRK2) 
activity, which was presumably induced by 
the increased signaling of the Arg389 vari-
ant, since the less active Gly389 form did not 
alter myocardial GRK2 levels.

In HF, the myocardium has a signifi-
cant loss of contractile function. In order 
to compensate for the loss of systemic 
perfusion due to pump failure, the heart 
must increase heart rate and contractility. 
This is done by increased neurohumoral 
activation through increases in the activ-
ity of the sympathetic nervous system and 
renin-angiotensin system. Increases in 
the sympathetic catecholamines norepi-
nephrine and epinephrine lead to chronic 
activation of myocardial β-ARs in order to 
drive the failing heart. However, chronic 
activation of these pathways, in particular 
activation of the β1-AR, leads to increased 
cardiotoxicity and cardiac pathology 
(3). This partially explains the clinical 
benefit achieved by β-AR antagonists, 
which block the overt noxious effects of 
catecholamines and have been shown to 
improve survival and reverse pathologic 
cardiac remodeling (9). Interestingly, sen-
sitivity to the beneficial effects of β-AR 
blockade differs by ethnicity, as evidenced 
by data from the Beta-Blocker Evaluation 
of Survival Trial (BEST) demonstrating a 
lack of benefit in black patients with New 
York Heart Association class III or IV HF 
treated with the beta blocker bucindolol, 
compared with other patients (10). It was 
reasoned that racial differences in the inci-
dence of HF and therapeutic response to 
β-AR antagonists may be heritable and 
that genetic heterogeneity with respect to 
β1-ARs may partially account for this phe-
nomenon. However, conflicting data from 
clinical studies analyzing the association 
of β1-AR polymorphisms and response to 
β-AR antagonists have made it difficult to 
reach conclusions regarding the true clini-
cal importance of β-AR polymorphisms 
with respect to treatment outcome (for 
review see ref. 11).

β1-AR signaling in real time
Recent advances in the fields of biochemistry 
and applied science have generated new class-
es of fluorescent probes to permit the direct 
assessment of the dynamic behavior of bio-
logical molecules. Specifically, fluorescence 
resonance energy transfer–based (FRET–
based) techniques have allowed investigators 
to evaluate dynamic protein-protein interac-
tions and protein conformational changes 
in real time (for reviews see refs. 12, 13).  
FRET fundamentally characterizes the spa-
tiotemporal relationship of fluorescently 
labeled molecules within a system by way of 
recording the energy transfer from a donor 
fluorophore in an excited electronic state to 
an acceptor fluorophore of adequate proxim-
ity. In this issue of the JCI, Rochais and col-
leagues report on their exploitation of FRET 
technology to generate a β1-AR FRET sensor 
to directly assess the effects of the Arg389Gly 
polymorphism in the β1-AR on receptor acti-
vation, downstream signal transduction, and 
response to beta blockade in cultured human 
cells in real time (14). The β1-AR FRET sen-
sor used in this study was generated based 
on evidence that the receptor undergoes 
conformational changes upon agonist bind-
ing, specifically in the region of the carboxy 
terminus and third intracellular loop, which 
move apart upon receptor activation. The 
authors then tagged these regions with 
cerulean and yellow fluorescent proteins, 
respectively, allowing them to detect the 
movement of these regions in real time using 
FRET, thereby tracking the dynamic changes 
in the receptor in response to agonist and 
antagonist binding. The authors demon-
strated that this β1-AR FRET sensor shares 
pharmacological and signaling characteris-
tics consistent with that of the WT β1-AR,  
including similar activation kinetics and 
downstream signaling via cAMP formation.

Utilizing β1-AR FRET sensors for both 
Gly389 and Arg389 variants of the β1-AR, 
the authors were able to directly assess the 
functional consequences of β-AR poly-
morphisms with respect to receptor con-
formation in response to pharmacologic 
agonists and antagonists. In contrast with 
results in previous in vitro studies (7, 8), 
the authors identified no significant differ-
ences between Gly389 and Arg389 variants 
in β1-AR–mediated Gs coupling or cAMP 
accumulation in response to agonist (14).

Perhaps the most exciting clinically rel-
evant data from this study is the compari-
son of the FRET responses of the 2 β1-AR 
variants generated by the β-AR antagonists 
bisoprolol, metoprolol, and carvedilol. 

Each β-AR antagonist induced an increase 
in FRET ratio, signifying the occurrence of 
an active change in receptor conformation 
upon antagonist binding, suggesting an 
inverse agonist mechanism of action on the 
β-AR. Increases in FRET ratio were minor 
with respect to decreases in receptor activa-
tion for metoprolol and bisoprolol, and the 
effects of these 2 beta blockers did not dif-
fer between β1-AR variants (14). In contrast, 
carvedilol induced strong inverse agonism 
with regard to both β1-AR variants; further-
more, the Arg389 β1-AR variant exhibited a 
2.5-fold increase in FRET ratio as compared 
with the Gly389 β1-AR variant. The unique 
properties of this beta blocker were con-
firmed downstream of receptor inactivation 
at the level of decreased cAMP accumula-
tion: both β1-AR variants demonstrated 
marked reduction in basal cAMP levels (14). 
Carvedilol led to a much stronger reduction 
in basal cAMP content in the Arg389 β1-AR 
variant as compared with the Gly389 β1-AR 
variant (see Figure 1). The authors further 
established the phenotypic relevance of 
the molecular alterations induced by the 
Arg389Gly polymorphisms using primary 
neonatal rat cardiac myocytes infected with 
adenoviruses containing the β1-AR variants 
as a model system to study cardiac rate con-
trol. Under basal conditions, both β1-AR 
variants induced an increase in contractile 
activity as compared with WT cardiac myo-
cytes; however, the contractile activity of the 
Arg389 variant was increased nearly 1.5-fold 
as compared with the Gly389 variant, and 
carvedilol significantly decreased this activ-
ity preferentially in the Arg389 β1-AR.

Overall, the study by Rochais et al. (14) rep-
resents the first direct assessment of GPCR 
function using the well-characterized β1-AR 
system that also happens to be critical for 
normal and pathological cardiac physiol-
ogy. Of importance, the authors were able 
to assess the conformational changes that 
occurred during agonism and antagonism 
of the receptor. Moreover, the data reveal 
that different β1-AR antagonists, particular-
ly carvedilol, are capable of inducing varying 
degrees of inverse agonism on the receptor 
and that this effect of carvedilol is depen-
dent on the amino acid residue present at 
position 389 of the β1-AR. Carvedilol, unlike 
metoprolol or bisoprolol, is a nonselective 
beta blocker and can also act on α1-ARs (15). 
Therefore, it would be interesting to address 
the potential effects of β2-AR and α1-AR sig-
naling on cardiac rate control to ascertain 
whether any receptor crosstalk or dimeriza-
tion is responsible for the decreased basal 
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cAMP production mediated by the Arg389 
variant or whether antagonism of these other 
receptors is involved in the beneficial effects 
of carvedilol in HF. However, what is impor-
tant to remember based on the current work 
is that for the β1-AR, carvedilol displays the 
greatest degree of inverse agonism, especially 
for the Arg389 variant (Figure 1), and studies 
such as this could lead to research broaden-
ing our knowledge of this pharmacological 
property of GPCR ligands and therefore 
potentially increase their clinical utility (16).

Taking it personally
The implications of these findings are of 
potentially profound clinical importance 
when considering the interindividual and 
ethnic variation that occurs in response to  
β-AR blocker therapy in the treatment of HF. 
It has been reported that the allele frequency 
of the Arg389 variant is 20% less common 
in black patients compared with non-black 
patients, and this may partially explain the 
poorer response to β1-AR antagonists seen 
in blacks compared with that of the rest of 
the population (17). Future efforts to char-
acterize the effect of genetic heterogeneity in 
cellular response to pharmacological agents, 
such as the β1-AR antagonists examined in 
this study, lend credence to the viability of 
the concept of pharmacogenomics — phar-
macologic intervention adapted according 
to an individual’s genetic makeup — and the 

realization of “personalized” medicine for 
the treatment of cardiovascular disorders 
such as HF (18).
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Macrophages are present as resident cells in adipose tissue, and blood 
monocytes are recruited in increased numbers to sites of lipid accumula-
tion in atherosclerosis, a modified form of inflammation in the arterial wall. 
Recent findings reported by 3 separate groups in this issue of the JCI pro-
vide evidence for distinct monocyte subsets, differential chemokine recep-
tor usage, and phenotypic modulation of macrophages in murine models of 
genetic and high-fat diet–induced disease (see the related articles beginning 
on pages 175, 185, and 195). These studies raise prospects for selective thera-
peutic targets to ameliorate macrophage hyperinflammatory responses, 
while sparing host defense and repair mechanisms.

Monocytes and mature macrophages are 
prominent in the host response to lipid 
accumulation in major arteries, the devel-
opment of atherosclerotic plaques, and 
their complications (1). Less established 
are the details of their colocalization and 
possible metabolic interactions with adi-

pocytes in body fat stores (2). New studies 
reported in this issue of the JCI by Swirski 
et al. (3) demonstrate that a monocyte sub-
set that expresses high levels of a marker 
antigen, Ly-6C, dominates hypercholester-
olemia-associated monocytosis and gives 
rise to macrophages in atheromata. Also 
in this issue, Tacke et al. (4) report that 
monocyte subsets differentially employ the 
chemokine receptors C-C motif chemo-
kine receptor 2 (CCR2), CCR5, and C-X3-C  
motif chemokine receptor 1 (CX3CR1, 
also known as the fractalkine receptor) to 
enter atherosclerotic plaques. They also 
exploited an mAb, Gr-1, directed against 
Ly-6 family antigens to distinguish mono-
cyte subsets and used CD11c, a β2 integrin 
expressed by myeloid DCs and selected tis-
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