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There is increasing evidence that the immune response can be inhibited by several T cell subsets, including NK  
T cells, CD25+CD4+ T cells, and a subpopulation of CD8+ T cells. Animal model studies of multiple sclerosis have 
suggested an important role for suppressor CD8+ T cells in protection against disease recurrence and exacerbation. 
The molecular lynchpin of CD8+ suppressive activity is the murine MHC molecule Qa-1, termed HLA-E in humans. 
Here we summarize findings from work on Qa-1 that have begun to delineate suppressor CD8+ T cells and their 
mechanisms of action in the context of self tolerance and autoimmune disease.

Mechanisms of peripheral tolerance
The first stages of T cell development occur in the thymus, where a 
selection process weeds out potentially autoreactive cells. Success-
ful progression of thymocytes through selection requires expres-
sion of TCRs capable of efficient binding to self-MHC products. 
Although T cell clones bearing TCRs with high affinity for self-
peptide MHC products are generally eliminated during this pro-
cess, the resulting T cell repertoire is still strongly biased toward 
self reactivity (1). As a result, substantial numbers of peripheral  
T cells can proliferate in response to self-peptide MHC complex-
es, and some can differentiate into effector cells in the context of 
inflammatory stimuli (2–4).

Expansion of autoreactive T cells in peripheral lymphoid tissues 
is constrained, in part, by abortive TCR signals that lead to T cell 
elimination or inactivation (5, 6). However, mechanisms of T cell 
elimination that include activation-induced cell death (AICD) 
and anergy, an insensitivity to antigens that creates an inability 
to elicit a normal antigenic response, may not suffice to prevent 
autoimmune disease (7, 8). The apparent limitations of these 
mechanisms for eliminating all self-reactive cells have stimulated 
research into T cells and other cell types, so-called suppressor  
T cells, that may exert dominant inhibitory effects on expansion 
of pathogenic autoreactive T cells. One such group of cells is the 
suppressor CD8+ T cells.

Suppressor CD8+ T cells and Qa-1
The recent resurgence of interest in suppressor T cells has been 
largely due to the delineation of a CD4+ sublineage with regulatory 
activity (9–13). The possibility that CD8+ T cells might also contain 
a regulatory sublineage has received much less attention despite the 
fact that CD8+ T cells were the initial target of work in this area. 
Early research used experimental systems that mainly measured in 
vitro antibody responses to complex antigens such as foreign eryth-
rocytes as well as in vivo contact hypersensitivity and delayed-type-
hypersensitivity reactions. Downregulation of these responses by 
subpopulations of CD8+ T cells was then difficult to distinguish 
from modes of inhibition that were not yet well understood, includ-

ing the impact of regulatory cytokines and AICD on CD4+ T cells. 
These difficulties, combined with the inability of molecular genet-
ics to validate early models by identifying genes for suppressor fac-
tors and receptors, gave rise to a well-justified skepticism concern-
ing the existence of suppressor CD8+ T cells. However, some useful 
information can be gleaned by reexamining these early approach-
es. For example, the ability of T cell vaccination with pathogenic 
autoreactive CD4+ clones to inhibit autoimmune disease (14, 15) 
has been verified, along with suggestions that protection depends 
on induction of suppressor CD8+ T cells (16–18).

Murine Qa-1
More recent studies have suggested that a subpopulation of CD8+ 
T cells might suppress the response of successfully activated CD4+ 
T cells and B cells through an interaction that depends on expres-
sion by target cells (or APCs) of the HLA class Ib MHC molecule 
Qa-1 (19, 20). The Qa-1 protein is a member of the class Ib MHC 
family. Most class Ib MHC gene products interact with CD8 on 
the surface of T cells and are expressed on the cell surface along 
with β2 microglobulin (β2m) molecules. Several class Ib molecules 
are ligands for receptors on NK cells, e.g., Qa-1 is a ligand for the 
inhibitory CD94/NKG2A or CD94/NKG2C receptors.

The impact of molecular immunology on our understanding of 
Tregs is evident from research into the murine Qa-1 protein. Early 
work revealed an inhibitory interaction between CD8+ and CD4+ T 
cells in vitro that depended on the expression of the Qa-1 molecule 
on activated CD4+ target cells (21). The significance of this observa-
tion became clearer after Qa-1 was shown to be a peptide-binding 
class Ib molecule (rather than an activation-related surface protein); 
it mapped to the 3′ end of the MHC class I region on chromosome 
17, the same region that contained other class Ib genes, including 
thymus leukemia antigen (22–24). The mouse MHC class Ib mol-
ecule Qa-1 and its human homologue, the HLA-E protein, form 
heterodimers with β2m in lymphoid cells that bind to and present 
peptides derived from self or foreign proteins (25–28). Although 
Qa-1 RNA is expressed in many cell types (29), surface expression 
of the Qa-1–β2m heterodimer is highly constrained by Qa-1–β2m 
assembly and transport mechanisms that favor expression on acti-
vated T and B lymphocytes and dendritic cells (28, 30).

Qa-1 gene products engage two classes of receptors
Peptide-containing Qa-1 complexes engage two classes of recep-
tors. Qa-1 heterodimers containing peptides derived in a transport-
er associated with antigen processing–dependent (TAP-dependent) 
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fashion from class Ia leader sequences, termed Qa-1 determinant 
modifiers (Qdm), bind to nonclonally distributed CD94-NKG2A, 
C, and/or E receptors on NK cells and a subpopulation of CD8 
cells. The functional outcome of Qdm:NKG2 interactions is gener-
ally inhibition of NK or CD8 CTL activity (31). A second class of 
Qa-1 ligands is comprised of Qa-1:β2m heterodimers containing a 
growing number of peptides, including those derived from TCR Vβ, 
preproinsulin, bacterial GroEL, and endogenous heat shock pro-
tein 60 (hsp60) (27, 32–34). Interaction between this class of Qa-1 
ligands and the TCR on CD8 cells can promote CD8 cell activation, 
expansion, and expression of effector cell activity (35).

Qa-1–restricted suppression by CD8+ T cells
As noted above, interest in CD8+ T cell suppression has been rekin-
dled by studies of experimental autoimmune encephalomyelitis 
(EAE) in B10.PL mice, which become resistant to disease after ini-
tial exposure to myelin basic protein (MBP). Mice deficient in CD8+ 
T cells due to a targeted mutation or antibody-dependent deple-
tion do not develop resistance to EAE (36, 37). Resistance requires 
exposure of CD8+ T cells to MBP, since replenishment of CD8+-
deficient mice with CD8+ T cells from nonimmune donors before a 
secondary anti-MBP response does not prevent disease recurrence. 
Additional studies by Jiang, Chess, and colleagues suggest that the 
inhibitory interaction between CD8+ Tregs and MBP-reactive CD4+ 
T cells involves TCR-based recognition of Qa-1–self-peptide com-
plexes expressed by autoreactive CD4+ T cells (16, 17, 35).

To develop a clearer understanding of the physiological role of 
Qa-1–reactive CD8+ T cells in suppressing immune responses, we 
recently generated mice that are deficient in Qa-1 gene expression 
due to a targeted gene mutation (38). Qa-1–deficient animals devel-

op exaggerated secondary CD4+ T cell responses after 
viral infection or immunization with foreign or self 
peptides. In addition, enhanced CD4+ T cell respons-
es of Qa-1–deficient mice to mouse proteolipid pro-
tein (PLP) self peptide are associated with increased 
susceptibility to recurrence of EAE; this phenotype is 
remedied by lentiviral-based expression of the correct 
Qa-1 allele (38). These data indicate Qa-1 is required 
for an appropriately curtailed CD4+ T cell response to 
infection and for autoimmunity resistance.

Analysis of the cellular basis of Qa-1–dependent 
resistance to EAE indicated that CD8+ T cells from 
PLP-peptide immune mice suppressed peptide-spe-
cific expansion of CD4+ T cells; both EAE resistance 
and the development of suppressor CD8+ T cells 
required prior immunization with PLP peptide. These 
findings indicate that the primary immune response 
to self peptides may include expansion of Qa-1–
restricted CD8+ T cells that can inhibit expansion of 
pathogenic autoreactive CD4+ T cells and consequent 
autoimmune disease. The impact of CD8+-dependent 
suppression on the clonal composition of MBP-reac-
tive CD4+ T cells has been ascertained through com-
plementarity-determining region 3 sequence analysis, 
a PCR-based technique that allows amplification and 
definition of distinct antigen-binding regions of TCR 
chains, of CD4+ T cells after recovery from EAE in 
the presence or absence of CD8+ T cells. Depletion of 
CD8+ T cells was associated with expansion of several 
dominant clones of pathogenic autoreactive CD4+ T 

cells in contrast to the more heterogeneous TCR repertoire of CD4+ 
T cells, each of limited clonal expansion, that developed after expo-
sure to MBP in the presence of CD8+ T cells (35).

Analysis of Qa-1–restricted suppression suggests that expression 
of a TCR on CD8+ suppressor T cells may be necessary for recogni-
tion of expression of suppressive activity (38). Another observation 
consistent with this idea is that constraints placed on expression of 
a full TCR repertoire prevent CD8 cells from mediating suppres-
sion. Changes in the structure of Qa-1 on target cells that may affect 
peptide binding also affect susceptibility to suppression of CD8 
cells. CD8+ T cells expressing an incorrect TCR transgene are unable 
to mediate suppressive activity (38). This finding is consistent with 
TCR–dependent discrimination of peptide–Qa-1 complexes on tar-
get CD4+ T cells. NKG2-dependent recognition of Qa-1, on the other 
hand, would not be expected to be affected by allele-specific changes, 
although without additional analysis of Qa-1 proteins that express 
defined mutations, this remains uncertain. Since NKG2 receptors 
on CD8+ T cells may affect the levels of TCR-dependent suppressive 
activity, e.g., through regulation of TCR-dependent activation and 
expansion of these cells (Figure 1), experimental analysis using cells 
that express mutant Qa-1 molecules that differentially engage the 
TCR and NKG2 receptors is needed for a full molecular dissection 
of the contribution of these two Qa-1–binding recognition elements 
to suppressive CD8+ activity.

The timing of CD8+-dependent inhibitory responses can be con-
trasted with that of the naturally occurring CD4+CD25+ Tregs, which 
interrupt expansion of self-reactive T cells during the initial stages of 
primary responses. Suppressor CD8+ T cells arise later in the immune 
response and become apparent experimentally only after restimulation 
by antigen or superantigen (11, 38, 39). The development of Qa-1– 

Figure 1
Engagement of Qa-1 by the TCR and by CD94/NKG2A. (A) Presentation of Qa-1– 
bacterial GroEL peptide by a DC following Salmonella infection to CD8+ T cells, where 
the receptor is a TCR, leads to CTL responses. (B) Presentation of Qa-1–self peptides 
by activated CD4+ T cells to CD8+ T cells, where the receptor is a TCR, leads to 
the development of Qa-1–restricted suppressor CD8+ T cells. (C) Engagement of 
CD94/NKG2A receptors on CD8+ T cells with a DC can inhibit either TCR-mediated 
CTL responses specific for Qa-1–foreign peptide ligands and/or TCR-mediated sup-
pressive responses specific for Qa-1–self peptide ligands. This NKG2A-dependent 
interaction may regulate expression of suppressor or cytotoxic CD8+ T cells through 
inhibition of cellular activation or diminished AICD.
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restricted suppressive activity more closely resembles the kinetics of 
CD8+-dependent cytolytic activity rather than CD4+CD25+ regulato-
ry activity. Both CD8+-dependent suppressive and cytolytic responses 
require primary immunization to generate TCR-dependent lysis or 
Qa-1–restricted elimination of target cells (38, 39).

The mechanism of Qa-1–restricted inhibitory interactions has 
not been established. CD8+ cells that recognize Qa-1 associated 
with insulin peptide efficiently kill Qa-1+ lymphoblastoid target 
cells in the presence of intact soluble insulin after TAP-indepen-
dent processing and presentation of insulin-derived peptide by 
Qa-1 (33). Qa-1–restricted inhibitory activity of CD8+ T cells may 
reflect lysis of activated CD4+ T cells that display Qa-1–peptide 
complexes, perhaps after TCR-dependent signals induce expres-
sion of relevant Qa-1 ligands on activated T and B lymphocytes. 
Although the Qa-1–binding peptides that target CD8+ respons-
es have not been fully identified, they may represent a relatively 
restricted set that is efficiently expressed on activated T cells after 
high avidity TCR-ligand engagement (35). The fate of individual 
TCRs following ligation with peptide-MHC complexes is thought 
to depend on peptide affinity, the association/dissociation rate of 
TCR-ligand formation, and the strength of TCR–dependent sig-
nals. Most internalized TCR complexes are degraded in lysosomes 
(40), but robust TCR engagement may facilitate a proteosome-
dependent degradation process that leads to recycling and TAP-
independent Qa-1 presentation (41).

Peptide presentation and selection  
of CD8+ T cells by Qa-1
Positive selection of thymocytes that express a TCR transgene spe-
cific for foreign peptides associated with Qa-1 depends on interac-
tions with Qa-1 peptides and self peptides expressed primarily by 
hematopoietic cells (42). Both selection and antigen recognition are 
TCR-dependent and do not require NKG2 receptors (28). Whether 
Qa-1–dependent negative selection by self peptides is dependent on 
TCR engagement or other receptors is unclear. A bacterial GroEL 
peptide that is almost identical to murine hsp60 peptide (GroEL: 
GMQFDRGYL; murine hsp60: GMKFDRGYI) elicits cytolytic CD8+ 
T cells that are cross-reactive with the murine hsp60 self peptide. 
One explanation for high levels of Qa-1–restricted reactivity to 
this self peptide is that negative selection by Qa-1 is less efficient 
than negative selection by conventional class I MHC. Alternatively, 
expression of CD8 reactivity to Qa-1–restricted self peptides may 
reflect defects in peripheral tolerance mechanisms.

The expression, structure, and processing pathways of Qa-1 are 
distinct from those of classical MHC class I. Class Ia molecules 
are widely expressed on most cell types regardless of activation 
status. Qa-1 is preferentially expressed on activated but not rest-
ing T cells and thymocytes, thus protecting unstimulated T cells 
from the effects of CD8+-dependent suppression. Moreover, Qa-1 
expression on activated CD4+ T cells is short-lived, and optimal 
levels persist for hours rather than days after TCR ligation. Sus-
ceptibility of activated CD4+ T cells to suppression by CD8+ T 
cells is thus restricted to a brief window after immunization. Class 
Ia molecules are the most highly polymorphic human or mouse 
genes studied to date, but Qa-1 has very limited polymorphisms 
and has very tight specificity of peptide binding. Qa-1 was first 
found to bind the Qdm peptide; subsequent studies have shown 
that this class Ib MHC molecule is capable of presenting a variety 
of self and foreign peptides to CD8+ T cells through TAP-depen-
dent and TAP-independent pathways. The latter pathway allows 

Qa-1 on dendritic cells to cross-present peptides to CD8+ T cells, 
and similar trafficking machinery may allow Qa-1–dependent 
cross-presentation of peptides by activated CD4+ T cells. If so, this 
mechanism would allow the presentation of self peptides derived 
from the TCR or hsp60 in activated CD4+ T cells to CD8+ T cells. 
The observation that activated lymphoid cells can efficiently pro-
cess and present intact exogenous insulin associated with Qa-1 is 
consistent with this mechanism. Findings that engagement of the 
TCR by peptide ligands can lead to endocytosis of the TCR also 
suggest a mechanism that may allow TAP-independent endosomal 
loading of TCR-derived peptides onto Qa-1 molecules.

What about the contribution of non-TCR receptors to Qa-1– 
restricted activation of CD8+ T cells? Although CD94/NKG2 recep-
tors are expressed by less than 2.5% of CD8+ T cells in humans 
(43), they are upregulated after TCR engagement or stimulation 
by cytokines, including TGF-β and IL-15 (44, 45). CD94/NKG2A 
expression is also induced shortly after T cell activation following 
lymphocytic choriomeningitis or Listeria monocytogenes infection. Regu-
latory CD8+ T cells may express both clonally distributed TCR αβ 
receptors for Qa-1–self peptide (19, 20, 35) and nonclonally distrib-
uted NKG2+ coreceptors for Qdm–Qa-1 (46). Interactions between 
Qa-1–peptide ligands and the TCR αβ receptor may stimulate clonal 
expansion of CD8+ T cells and development of suppressive or effec-
tor activity, while interactions between Qa-1–Qdm and CD94-NKG2 
receptors on CD8+ T cells may downregulate expansion and/or pro-
tect against AICD (32, 47) (see Figure 1). According to this model, 
differential engagement of these two classes of Qa-1 receptors may 
regulate the expansion and activation of suppressor CD8+ T cells.

CD8+ T cell suppression and self tolerance
The potential role of Qa-1–restricted CD8+ T cells in clinical or ani-
mal models — aside from murine EAE — has not been investigated. 
However, experimental analysis of other animal models of autoim-
mune disease and organ transplantation have suggested a potential 
role for inhibitory CD8+ T cells and/or T cells that may recognize con-
served Qa-1–peptide ligands. Vaccination with self or foreign hsp60 
can inhibit development of adjuvant-induced arthritis, and transfer 
of hsp65 peptide-primed T cells can afford protection against disease 
development in adoptive hosts (48, 49). Analysis of the protective 
activity of hsp-derived peptides in murine adjuvant–induced arthri-
tis (50) and in some mouse models of type 1 diabetes (51) in animals 
deficient in Qa-1 expression may help to clarify the contribution of 
Qa-1–restricted CD8+ T cells to disease protection.

Studies of transplantation tolerance have also suggested a pos-
sible role for suppressor CD8+ T cells. Early experiments first sug-
gested that Qa-1–specific transplantation tolerance could prevent 
generation of alloreactive CTL (52) as well as the generation of 
suppressor T cell activity in anti–Qa-1 immune responses (53, 54). 
CD8+ T cells may contribute to the inhibitory effects of pretrans-
plant donor-specific blood transfusion since elimination of this 
subset before blood transfusion can result in graft rejection (55). 
The potential role of Qa-1/HLA-E–restricted CD8 cells in these 
responses is not currently understood.

Concluding remarks
Definition of the role of CD8+ T cells that suppress the response of 
CD4+ T cells expressing Qa-1–peptide target ligands has important 
implications for understanding immunoregulation in the context 
of self tolerance. Further investigation of animal models of arthritis, 
autoimmune type I diabetes, and organ transplantation is needed to 
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delineate the regulatory role of the Qa-1/HLA-E–restricted mecha-
nisms defined in this review. The availability of Qa-1 deficient mice 
represents a new experimental approach to evaluation of the poten-
tial role of Qa-1–restricted suppression in these disorders.
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