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Come forth CD1d: Hsp110 in the regulation
of intestinal epithelial CD1d expression

Christopher V. Nicchitta

Department of Cell Biology, Duke University Medical Center, Durham, 
North Carolina, USA

CD1d, a nonclassical MHC class I–like molecule, is prominently
expressed on intestinal epithelial cells and is thought to function in the
regulation of intestinal intraepithelial lymphocyte activity. Hsp110, an
abundant heat shock protein present in essentially all mammalian tis-
sues, has now been shown to upregulate CD1d expression in colonic tis-
sue culture cell lines (see the related article beginning on page 745).
Might this abundant chaperone serve an autocrine function in the reg-
ulation of CD1d expression?
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Intestinal epithelial cells (IECs) serve
as the cellular barrier between the
enormously challenging antigenic

environment of the intestinal lumen —
consisting of dietary antigens, viruses,
bacteria, and fungi — and the mucosal
immune system, the largest lymphoid
tissue of the body. Given this remark-
able immunological challenge, it
comes as no surprise that both normal
and pathological intestinal epithelial
physiology involves complex interac-
tions among the immune and nonim-
mune cells of the gut, the intestinal
flora, and the activities of the sympa-
thetic, parasympathetic, and enteric

nervous systems. Unfortunately, such
complex interactions often go awry,
resulting in the chronic, T lympho-
cyte–mediated mucosal injury that
characterizes inflammatory bowel dis-
eases (IBDs).

The molecular etiology of IBDs is
under continuing investigation, with
current views emphasizing interac-
tions between environmental patho-
gens and an altered, or genetically per-
missive, immune system (1). Recent
studies have implicated CD1d in the
regulation of intestinal inflammation,
though here again, the precise
immunological mechanism for such
regulation remains to be identified
(2–4). CD1d is a nonclassical MHC
molecule that functions in the devel-
opment of NK1.1+ T cells and has been
implicated in the process of IEC-elicit-
ed T cell proliferation (5, 6). Interest-
ingly, antibody cross-linking of CD1d
has been demonstrated to elicit epithe-
lial IL-10 production (7). IL-10 is
known to serve important functions in
the regulation of mucosal inflamma-
tion, and, importantly, IL-10–deficient
mice coincidentally develop IBD
(reviewed in ref. 8). From these obser-
vations has come the intriguing sug-
gestion that ligation of CD1d may
serve to suppress mucosal inflamma-



tion, perhaps via activation of auto-
crine, IL-10–dependent responses in
IECs (7). Such observations point to a
critical need to understand the regula-
tion of CD1d expression, CD1d recog-
nition, the antigen(s) presented by IEC
CD1d, and potential roles of CD1d-
directed signaling in the regulation of
mucosal inflammation.

A novel mechanism for CD1d
upregulation
New and provocative insights into the
regulation of CD1d expression are
reported in this issue of the JCI by Col-
gan and colleagues (9). In this study,
Colgan et al. examined whether CD1d
expression could be regulated by intes-
tinal luminal contents, using the
colon-derived tissue culture cell lines
T84, HT29, and CaCo-2 as model sys-
tems. These intestinal epithelioid cell
lines express low levels of CD1d, in
marked contrast to tissue IECs, which
express CD1d in both the apical and
the basolateral domains. However,
when T84 cells were cultured in the
presence of a soluble fraction derived
from murine or human intestinal
luminal contents, a significant increase
in cell surface expression of CD1d was

observed. Importantly, the relative
expression of other cell surface pro-
teins, i.e., MHC class II and ICAM-1,
were not affected.

Experiments performed with luminal
contents derived from germ/patho-
gen–free mice suggested that the factor
or factors eliciting CD1d expression
were not of microbial origin. Microse-
quencing analyses of the major protein
components of a partially purified
luminal content extract identified heat
shock protein 110 (Hsp110), and, most
remarkably, addition of purified
recombinant Hsp110 to T84 monolay-
ers recapitulated the effects of the lumi-
nal contents: recombinant Hsp110
elicited CD1d expression. Furthermore,
Colgan et al. (9) report that Hsp110 is
abundantly expressed in IECs, leading
them to postulate that Hsp110 may
undergo a regulated release from
epithelia, where it would provide an
autocrine signal for CD1d regulation.

Hsp function in the extracellular
space
Hsp110 is a molecular chaperone that
belongs to the Hsp100/Sse1 family of
heat shock proteins, which are them-
selves distant relatives of the Hsp70

family of heat shock proteins (10, 11).
Hsp110 is expressed in all mammalian
tissues and is induced by heat shock.
Like other heat shock proteins,
increased expression of Hsp110 is asso-
ciated with enhanced thermotolerance.
Given its prominent role in intracellular
protein folding and assembly, it is not
immediately obvious why Hsp110
would function in an extracellular com-
partment to regulate cell surface CD1d
expression. However, recent studies have
demonstrated that heat shock/molecu-
lar chaperone proteins can function in
an extracellular context to modulate
and/or elicit innate and adaptive
immune responses (12). In particular,
many Hsp’s have been reported to
upregulate the expression of various cell
surface proteins of dendritic cells (13).

An autocrine function for Hsp110?
As with all groundbreaking discoveries,
the identification of Hsp110 as a
potential autocrine inducer of CD1d
expression raises many additional ques-
tions. To the cell biologist, the existence
of substantial quantities of intact
Hsp110 in intestinal luminal contents
is something of a mystery. As Colgan et
al. note, Hsp110 is not found in

The Journal of Clinical Investigation | September 2003 | Volume 112 | Number 5 647

Figure 1
Hypothetical model for an Hsp110 function in IEC CD1d expression. (I) In this speculative model, Hsp110 release from IECs occurs during
the physiological process of epithelial renewal and contributes, directly or indirectly, to the regulation of CD1d expression. In the case of
normal (physiological) epithelial cell renewal, Hsp110 is released, whereupon it serves to signal normal (physiological) levels of CD1d expres-
sion. In this scenario, CD1d-directed NK T cell activation leads to the induction of IL-4 and IL-10 release and suppression of inflammatory
responses. (II) In the case of accelerated (pathological) IEC death, Hsp110 release may be elevated, leading to enhanced levels of CD1d
expression and perhaps alterations in the identity or relative quantity of CD1d ligands. In this scenario, NK T cells would be activated to yield
release of the proinflammatory cytokines IFN-γ and TNF-α, thereby promoting the induction of inflammatory disease. TCR, T cell receptor.



prokaryotes; therefore gut flora are not
the source. A dietary source can be
questioned, as it is unlikely that the
Hsp110 would be recovered in a struc-
turally intact form in the large intes-
tine. And so the most likely source is
the gut epithelium itself. Yet, Hsp110
does not possess a signal peptide and so
cannot be secreted from IECs via the
classical secretory pathway. Non-
canonical secretion, as seen, for exam-
ple, with FGF-2, is a possibility (14).
However, this release pathway, and the
analogous pathway in yeast, appear to
transport very few proteins. Perhaps,
then, Hsp110 is released into the intes-
tinal lumen as a consequence of epithe-
lial renewal, particularly in response to
IEL activation (15). If this is the case,
though, it might be expected that other
abundant cytosolic chaperone proteins,
such as Hsp90 and Hsp70, would be
recovered in the intestinal contents as
well. Nonetheless, perhaps inappropri-
ately elevated levels of Hsp110 in the
intestinal lumen serve as an immuno-
logical “trigger” leading to aberrant
induction of CD1d expression, a subse-
quent activation of NK T cells, and 

IL-13–elicited destruction of IECs (Fig-
ure 1) (16). Whatever the mechanism,
one is left to ponder the fascinating mys-
tery of why IECs might (uniquely?)
release Hsp110 into the gut lumen.
Insights into the precise cellular source of
the gut-lumen Hsp110 and the mecha-
nism of its release will provide all-impor-
tant clues to this new riddle in the ever-
expanding world of Hsp110 function.
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Dendritic cells and the intestinal 
bacterial flora: a role for localized 
mucosal immune responses

Holm H. Uhlig and Fiona Powrie

Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom

Mammals coexist in an overall symbiotic relationship with a complex
array of commensal bacterial flora that colonizes the gastrointestinal
tract. These intestinal bacteria interface with cells of the mucosal immune
system, including DCs (see the related article beginning on page 693).
Here we discuss mechanisms of interaction between intestinal bacteria
and DCs and the role of localized gastrointestinal immune responses.
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Inflammatory bowel disease 
is associated with a dysregulated
immune response to intestinal
bacterial flora
Through processes of evolutionary
and individual adaptation, mammals
coexist with an estimated 300 to 500
different species of commensal bacte-
ria that colonize the gastrointestinal
tract (GIT) in an overall symbiotic rela-

tionship (1, 2). The presence of intes-
tinal bacteria plays an important role
in host metabolism, the development
of the intestinal epithelium, and the
intestinal immune system, and it also
protects the host against rapid colo-
nization by intestinal pathogens (1, 2).
To allow sufficient defense against
potential pathogens but restrict the
immune response to nonpathogenic
resident commensal bacteria, the
mucosal immune system needs to be
tightly regulated.

In human inflammatory bowel dis-
ease (IBD), which encompasses Crohn
disease and ulcerative colitis, it is
thought that a dysregulated T cell
response to the intestinal bacterial
microflora leads to chronic intestinal
inflammation (2, 3). Although increas-
ing evidence suggests that the intestin-
al flora is involved in the pathogenesis
of human IBD, to date no specific bac-
terial pathogen has been identified. It
seems more likely that different bacte-
ria are involved in the initiation of the
pathogenic immune response (4, 5).


