
The Journal of Clinical Investigation | February 2003 | Volume 111 | Number 4 1

The role of uncoupling protein 3 
in human physiology

W. Timothy Garvey

Division of Endocrinology, Diabetes, and Medical Genetics and Department of Medicine,
Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center,
Charleston, South Carolina, USA

J. Clin. Invest. 111:438–441 (2003). doi:10.1172/JCI200317835.

COMMENTARY

See the related article beginning on page 479.

Obesity is simply understood as an
imbalance between energy intake and
expenditure in favor of weight accre-
tion. However, the human biological
interface between food consumption
and energy dissipation results in
broad individual differences in eating
behavior, physical activity, and effi-
ciency of fuel storage and metabolism.
In particular, the basal metabolic rate,
which accounts for the greatest por-
tion of overall energy expenditure, can
vary almost twofold among individu-
als. Classically, three major biochemi-
cal systems are believed to contribute
to basal thermogenesis: futile cycles,
Na+/K+ATPase activity, and mito-
chondrial proton leak. The latter is
the most important quantitative con-
tributor and can explain up to 50% of
the basal metabolic rate (1). The
molecular basis of mitochondrial pro-
ton leak is unclear, despite its impor-
tance in the understanding of energy
balance and its potential as a thera-
peutic target for obesity treatment.
The article by Hesselink and col-
leagues in this issue of the JCI (2)
addresses whether uncoupling pro-
tein 3 contributes to mitochondrial
proton leak in human skeletal muscle.

Mitochondrial respiration 
and oxidative phosphorylation
The oxidation of fatty acids and pyru-
vate takes place in mitochondria,
where energy is converted into ATP
for use in cellular processes. Reducing
equivalents are extracted from sub-
strates and sequentially passed from
electron donors (reductants) to accep-
tors (oxidants) along the mitochondr-
ial respiratory chain to molecular oxy-
gen. The electron transport system is
located on the inner mitochondrial
membrane, where oxidation steps are
coupled by the transport chain to the
extrusion of protons out of the
matrix. This establishes an electro-
chemical potential difference across
the inner membrane and a motive
force for proton reentry through
F1F0-ATP synthase. ATP synthase cap-
tures the potential energy released
upon proton reentry by converting
ADP to ATP. In this manner, electron
transport is coupled to oxidative
phosphorylation. In a perfectly cou-
pled system, protons only enter the
mitochondrial matrix through ATP
synthase in the presence of ADP; this
form of respiration is classified as
state 3 (i.e., O2 is consumed only in
the presence of substrate and ADP).
However, mitochondria can also be
observed to use oxygen even in the
absence of ADP, which occurs when
protons leak back into the matrix via
a mechanism that does not involve
F1F0-ATPase. This proton leak reduces
the proton gradient driving ATP for-
mation and uncouples respiration
from oxidative phosphorylation. Oxy-
gen utilization in the absence of ADP
or in totally uncoupled mitochondria
is referred to as state 4 respiration.

Uncoupling proteins
The mechanisms mediating ATPase-
independent proton leak have not
been identified, except in mammalian
brown adipose tissue (BAT). BAT is
rich in mitochondria and lipid
droplets and is a major source of non-
shivering thermogenesis, used by most
mammals to resist cold. This function
is mediated by uncoupling protein 1
(UCP1) (previously known as uncou-
pling protein or thermogenin), first
cloned in 1985 (3). UCP1 localizes to
the mitochondrial inner membrane
and dissipates the transmembrane
potential by transporting protons
from the intermembrane space back
into the matrix. This reduces the pro-
ton motive force that drives ATP for-
mation, and respiration in the uncou-
pled mitochondria proceeds, releasing
fuel energy only as heat. In humans
and other large mammals, BAT disap-
pears after infancy, and there is mini-
mal or no detectable UCP1 expression
in adults. However, even in the absence
of UCP1, there is a finite proton leak
across the inner membrane that can-
not be explained by simple diffusion
(4). This led investigators to search for
additional uncoupling proteins with
broader tissue expression, and two
other members of the uncoupling pro-
tein family were identified in 1997.
The genes encoding human UCP2 (5,
6) and UCP3 (7, 8) lie in close proxim-
ity to each other on chromosome
11q13 and share 55% and 57% amino
acid identity with UCP1, respectively.
UCP2 mRNA is widely expressed in
multiple tissues, while UCP3 exhibits
more limited tissue-specific expression
confined to skeletal muscle and brown
fat tissue. UCPs have similar predicted
topology consisting of six transmem-
brane regions linked by polar loops
and are localized to the inner mito-
chondrial membrane. More recently,
two additional UCP-like genes, UCP4
and UCP5/brain mitochondrial carri-
er protein–1, have been identified,
which are expressed in the brain and
have relatively lower amino acid iden-
tity with UCP1 (30–40%).

Because of their homology with UCP1
and expression in adult tissues, UCP2
and UCP3 immediately were considered
as attractive candidates for proteins
involved in energy expenditure. When

Address correspondence to: W. Timothy
Garvey, Division of Endocrinology, Diabetes,
and Medical Genetics, Clinical Science
Building 816, Medical University of South
Carolina, 96 Jonathan Lucas Street,
Charleston, South Carolina 29425, USA.
Phone: (843) 876-5372; Fax: (843) 876-5133;
E-mail: garveywt@musc.edu.
Conflict of interest: The author has declared
that no conflict of interest exists.
Nonstandard abbreviations used: brown
adipose tissue (BAT); uncoupling 
protein 1 (UCP1).



expressed in yeast and mammalian cell
lines, both UCP2 and UCP3, like UCP1,
were shown to act as uncouplers, as evi-
denced by a decrease in mitochondrial
membrane potential and increases in
mitochondrial state 4 respiration, whole
cell O2 consumption, and heat produc-
tion. In addition, UCP1, UCP2, and
UPC3 shared in common the ability to
be regulated by factors important in
energy balance including β3-adrenore-
ceptor agonists, triiodothyronine, food
intake, and cold exposure (although
cold exerted more modest effects on
UCP2 and UCP3 than on UCP1). How-
ever, the paradigm began to unravel

when results from whole animal experi-
mentation were considered. First, both
fasting and high-fat feeding in rodents
were found to upregulate UCP2 and
UCP3, even though the former caused a
decrease in energy expenditure and the
latter had the opposite effect (3). Sec-
ond, UCP2 and UCP3 knock-out mice
exhibited normal body weight when
consuming conventional or high-fat
chow, as well as normal body tempera-
ture at room temperature and in
response to cold (9, 10). Paradoxically,
mitochondria isolated from the skeletal
muscle of UCP3 null mice were found
to have a reduced proton leak, an

increase in the ATP/ADP ratio, and a
decrease in state 4 respiration, consis-
tent with an uncoupling effect for UCP3
when present in the wild-type mice.
Transgenic mice hyperexpressing UCP3
were characterized by reduced body
weight, despite being hyperphagic, by
increased resting O2 consumption, and
by increased muscle temperature but
not core temperature. At the same time,
isolated mitochondria exhibited de-
creased transmembrane potential and
increased state 4 respiration. These
results in transgenic mice were more
consistent with a role for UCP3 as a
mitochondrial uncoupler.

Importance of human studies
Hesselink et al. (2) have studied the
capacity of UCP3 to act as an uncou-
pler in human skeletal muscle fol-
lowing a diet-induced increase in
UCP3 expression. Healthy male vol-
unteers expressed 44% more UCP3
protein in skeletal muscle while con-
suming a high-fat diet than while
consuming a low-fat diet. The inves-
tigators assessed mitochondrial func-
tion in vivo by measuring phospho-
creatine resynthesis following anoxic
muscle contractions. To permit rapid
bursts of muscle contraction, high-
energy phosphate bonds are stored as
phosphocreatine, which is formed by
transfer of phosphate from ATP to
creatine catalyzed by creatine kinase.
The rate of phosphocreatine resyn-
thesis reflects ATP synthetic rates via
mitochondrial F1F0-ATPase, which in
turn is affected by the extent of mito-
chondrial uncoupling. The authors
observed similar time courses of
phosphocreatine repletion in the
high-fat and low-fat fed subgroups,
indicating that the physiological
upregulation of UCP3 with high-fat
feeding did not affect the mitochon-
drial proton leak in vivo. The authors
also found that relative amounts of
free carnitine and acylcarnitine were
similar in both subgroups, verifying
that there were no differences in sub-
strate availability (at least from long-
chain fatty acids). The authors were
able to reject their initial hypothesis
and conclude that UCP 3 does not act
as a mitochondrial uncoupler in
human muscle under these physio-
logical conditions.

The paper is instructive for several
reasons. First, the authors have quan-
tified UCP3 expression at the protein
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Figure 1
Uncoupling proteins and mitochondrial function. The figure shows key proteins in the inner mito-
chondrial membrane involved in mitochondrial respiration, oxidative phosphorylation, uncoupling,
and import of long-chain acyl-CoA molecules. Two potential roles for UCP3 function are illustrat-
ed. (right-hand side) UCP3 functions as an uncoupler by acting as a channel for proton entry into
the matrix, which dissipates the transmembrane potential generated by respiratory chain complex-
es I through IV. This reduces the motive force for proton entry via the F1F0-ATPase, which catalyzes
ATP synthesis, and, in effect, uncouples respiration from oxidative phosphorylation. Substrate oxi-
dation proceeds via transfer of electrons from donors (reductants) to acceptors (oxidants) along
the respiratory chain to water, releasing energy as heat. Another consequence is a reduction in reac-
tive oxygen species formation, since these species are generated under conditions of high trans-
membrane potential and electron flow. (left-hand side) In another scenario, UCP3 acts as an
exporter of fatty acid anions (FA-). This could facilitate fatty acid oxidation and explain experimen-
tal observations linking regulation of UCP3 expression and genetic variation with effects on fat oxi-
dation. Under conditions of high fatty acid flux into mitochondria via carnitine palmitoyltransferase
1 (CPT1), excessive accumulation of long chain acyl-CoA molecules would be harmful to mem-
branes and sequester CoA, thereby impairing fat oxidation. To prevent these events, upregulation
of mitochondrial thioesterase cleaves the acyl-CoA allowing export of the fatty acid anion via UCP3.
Reuptake of a neutral fatty acid could deliver the proton (plus fatty acid anion) back into the matrix
resulting in uncoupling; however, the fatty acid export function would not necessarily depend upon
an uncoupling action for UCP3. e-, electron; I, Complex I or NADH-ubiquinone oxidoreductase; II,
Complex II or succinate ubiquinone oxidoreductase; III, Complex III or ubiquinol-cytochrome c oxi-
doreductase; IV, Complex IV or cytochrome c oxidase; Q, coenzyme Q or ubiquinone; c, cytochrome
c; UQ•–, ubisemiquinone; O2•–, superoxide; ROS, reactive oxygen species; SOD, superoxide dismu-
tase; F1 is the water-soluble nucleotide-binding complex and F0 is the hydrophobic transmembrane
complex that together comprise the F1F0-ATPase.
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level using well-characterized and spe-
cific affinity-purified antibodies. The
literature to date has relied heavily on
measurements of mRNA to study
UCP2 and UCP3 expression, since
available antibodies have lacked speci-
ficity. Second, the authors have
assessed mitochondrial uncoupling in
vivo following a diet-induced physio-
logical perturbation of UCP3 levels. In
knock-out mice, evidence that UCP2
or UCP3 functions as an uncoupler
has derived from experiments per-
formed in isolated mitochondria ex
vivo, not in intact tissues. The lack of
effects on energy metabolism and
body weight in these mice would sug-
gest that the uncoupling in isolated
mitochondria either does not occur in
vivo or is not physiologically signifi-
cant. In addition, Brand and his col-
leagues have recently found that
uncoupling in the presence of supra-
physiological UCP3 hyperexpression,
at the high levels obtained in trans-
fected yeast and in UCP3 transgenic
mice, was induced by artifact and did
not represent properties of the native
protein (11). This observation makes it
difficult to derive meaningful physio-
logical information from the study of
the transgenic mice (12), which hyper-
expressed UCP3 more than 50-fold
above the level in wild-type mice (11).
The emerging picture is that accurate
physiological information can most
confidently be obtained when mito-
chondrial uncoupling is assessed in
vivo within the physiological range of
UCP regulation.

Third, the authors studied human
beings. While transgenic mice experi-
ments have been highly prized by first-
line biomedical journals, experiments
involving human physiology have
been relatively undervalued in my
opinion. Particularly in the area of
energy expenditure, it is problematic
to extrapolate data in transgenic mice
to human physiology since adult
humans do not have brown fat and
heat production per kg body weight is
much lower in humans than in
rodents. This lesson was learned in the
case of leptin, which exerts major
effects on body temperature in
rodents, while this physiological
action is markedly attenuated or lack-
ing in humans (13, 14). The observa-
tions of Hesselink et al. (2) are not only
directly relevant to human physiology,
but constitute some of the strongest

data in any system addressing the
basic biochemical role of UCP3 as an
uncoupler. On balance, the paper
seems to prove the old adage that, if
you want to understand human phys-
iology, sometimes you just have to
study humans.

There are also limitations to data
interpretation. The authors cannot
exclude the possibility that the dietary
perturbations induced some other fac-
tor that modulates an uncoupling
effect of UCP3 or that an uncoupling
effect was too weak to discern using
this methodology, despite evidence
marshaled by the authors that phos-
phocreatine repletion rate is sensitive
to mitochondrial substrate availability.
The authors also point out that UCP3
upregulation could have been counter-
balanced by UCP2 downregulation (or
that of other unidentified uncouplers)
resulting in no net change in the mito-
chondrial proton leak. The authors dis-
count this possibility for two reasons;
UCP2 mRNA levels were unchanged,
and other authors have provided
immunological evidence that UCP2
protein is not expressed in muscle
despite the presence of UCP2 mRNA
(15). Even so, these latter observations
were reported in rodent muscle, leaving
open the possibility that UCP2 protein
is present in human muscle.

What is the role of UCPs?
If the authors’ conclusions are correct,
then what is the biochemical role of
UCP3 in humans? This question
remains an intriguing and important
issue for future research. Several inves-
tigators support the idea that UCP2
and UCP3 play a role in reducing reac-
tive oxygen species formation and so
protect cells from their damaging
effects (16). Reactive oxygen species are
produced in the course of mitochondr-
ial respiration in a manner that is pro-
portional to the transmembrane
potential; therefore, this role would
require that UCP3 function as an
uncoupler. Another exciting hypothe-
sis is that UCP3 could facilitate lipid
oxidation by acting as an FFA anion
transporter. Elevated circulating FFA
levels are associated with increased
muscle UCP3 expression in a variety of
physiological states (fasting, high-fat
feeding, lipid infusion, diabetes, obesi-
ty) independent of any changes in ener-
gy expenditure (3, 17, 18). In addition,
we have described an exon 6 splice

donor/acceptor polymorphism in
UCP3 that is associated with a marked
reduction in basal lipid oxidation rates
and an increase in resting respiratory
quotient in Gullah-speaking African
Americans (19). It is difficult to explain
how an FFA anion transporter could
facilitate FFA oxidation since entry of
long-chain FFA through carnitine
palmitoyltransferase I and subsequent
oxidation requires esterification to
CoA. However, under conditions of
high acyl-CoA flux and lipid oxida-
tion, accumulation of acyl-CoA would
be detrimental to mitochondrial func-
tion since these molecules are strong
surfactants that could damage mem-
branes and excessive sequestration of
CoA in the form of long chain FFA
esters could inhibit β-oxidation and tri-
carboxylic acid cycle activity. UCPs are
known to be able to export FFA anion
from the mitochondrial matrix (20),
but this could only help alleviate the
accumulation of acyl-CoA if a
thioesterase were available to remove
CoA from the FFA. Recently, Moore et
al. have shown that mitochondrial
thioesterase-1 is upregulated in UCP3-
hyperexpressing mice and have pro-
posed that this enzyme could perform
this very function in settings of
increased acyl-CoA flux (21). Thus, it is
feasible to suggest that UCP3 could
help sustain increased rates of lipid
oxidation via export of FFA anion. In
any event, as the search for the true
physiological role of UCP3 continues,
confident conclusions regarding
human physiology will require studies
in humans.
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