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Introduction
Globally, tuberculosis (TB) kills 1.4 million people each year, and in 
2019 it was the leading cause of mortality due to a single infectious 
agent (1). TB primarily affects young people of working age, result-
ing in a disproportionately high socioeconomic burden. Mycobac-
terium tuberculosis (Mtb) causes TB and has undergone prolonged 
coevolution with humans, essentially resulting in a symbiotic 

relationship between Mtb and its host (2). Granuloma formation 
is the hallmark pathological feature of TB, typically consisting of 
a caseous necrotic core surrounded by macrophages and an outer 
T cell infiltrate (3, 4). Granulomas have traditionally been thought 
to protect the host, but recent evidence suggests granulomas may 
also benefit the pathogen (3). Sarcoidosis is another human granu-
lomatous disease, which shares many histological and clinical fea-
tures with TB, primarily affecting the lungs and lymph nodes (5). 
The etiology of sarcoidosis remains undetermined, but is likely to 
involve autoimmune mechanisms (6). We hypothesized that com-
parative analysis of TB, caused by Mtb infection, and sarcoidosis, a 
noninfectious granulomatous disease, would identify TB-specific 
disease mechanisms and novel therapeutic targets.

TB causes morbidity and mortality due to the inflammatory 
host immune response to the pathogen, resulting in lung matrix 
destruction and transmission (7). However, in the preantibiotic 
era, approximately one-third of patients with pulmonary TB spon-
taneously recovered, indicating the fine balance between protec-
tive and pathological host responses (8). Consequently, the con-
cept of host-directed therapy (HDT) for TB has emerged, aiming 
to improve the clinical outcomes of TB by enhancing an efficacious 
immune response (9). Clinical trials using repurposed drugs such 
as metformin, pravastatin, vitamin D, doxycycline, and imatinib 
have been initiated, with each study emerging from a hypothe-
sis-based approach (10). As Mtb is a pathogen exclusive to humans, 
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including sex, ethnicity, site of lymph node, day of sequencing, or 
sequencing chip did not identify any confounding effects (Supple-
mental Figure 4). Hierarchical clustering of the 50 most variable 
genes also demonstrated clear separation of control samples, but 
did not separate TB and sarcoidosis samples (Figure 2B and gene 
list Supplemental Table 1). A similar pattern was observed with 
analysis of the 1000 most variable genes (Supplemental Figure 5 
and Supplemental Table 2).

Analysis identified significant numbers of differentially 
expressed genes (DEGs) in TB and sarcoidosis relative to control 
samples. In the TB samples, 748 genes were upregulated, of which 
376 were shared with sarcoidosis (Figure 2C and Supplemental Table 
3), while 111 genes were sarcoidosis unique. Among the genes down-
regulated, overlap was less marked, with 154 shared, 382 specific to 
TB, and 168 to sarcoidosis (Figure 2D and Supplemental Table 4). Of 
the total 1563 DEGs, one-third of them were shared between TB and 
sarcoidosis. Analysis of fold change and significance estimated as 
false discovery rate (FDR) less than 0.05 demonstrated log2 changes 
of up to 11-fold in TB relative to control samples (Figure 2E, gene list 
Supplemental Table 5), whereas the degree fold change in sarcoid-
osis was less marked (Figure 2F and Supplemental Table 6). Plotting 
DEGs in TB relative to control samples onto the KEGG TB pathway 
showed 79 of 139 genes to be upregulated (Supplemental Figure 6).

Direct comparison of TB and sarcoidosis was performed to 
identify differences between the 2 granulomatous conditions 
(Supplemental Table 7). Gene ontology analysis demonstrated 
that the primary biological processes upregulated in TB relative 
to sarcoidosis involve cytokine signaling and the inflammatory 
response, angiogenesis, and extracellular matrix organization 

we analyzed treatment-naive clinical lymph node TB specimens 
alongside sarcoidosis samples to dissect disease mechanisms, and 
then studied a biomimetic granuloma model in order to identify 
novel HDT targets in an unbiased manner.

Results
Identification and RNAseq analysis of TB, sarcoidosis, and control 
lymph node biopsies. The overall study design is presented in Fig-
ure 1. We searched our biorepository of lymph node samples taken 
during the clinical diagnostic pathway, with a subsequent diag-
nosis of tuberculosis, sarcoidosis and normal tissue. We used a 
screening process to identify specimens with robust diagnosis, no 
confounding clinical factors, and consistency of biopsy date (Sup-
plemental Figure 1; supplemental material available online with 
this article; https://doi.org/10.1172/JCI148136DS1). Lymph node 
biopsies were analyzed from 7 untreated TB patients, 10 untreat-
ed sarcoidosis patients, and 7 control samples. Granulomas were 
acquired using laser capture microdissection until a total area of 
8 mm2 per donor was acquired (Supplemental Figure 2), and an 
equivalent surface area was sampled from control lymph nodes. 
RNA sequencing (RNAseq) was performed using Ion Semicon-
ductor Sequencing, and the data were explored for variance, nor-
malized, and checked for outliers (Supplemental Figure 3). No 
outliers were identified after normalization.

Tuberculosis and sarcoidosis granulomas share transcriptional 
programs. Initial exploratory data analysis by principal component 
analysis identified a high degree of overlap between TB and sar-
coidosis samples, in contrast to clear clustering of control lymph 
node samples (Figure 2A). Analysis according to other variables 

Figure 1. Overall study design. (A) Granulomas from human biopsy specimens were acquired by laser capture microdissection, RNA was extracted and 
sequenced using the Ion Torrent system. (B) Human PBMCs were infected overnight with Mtb and encapsulated in a 3D collagen model, and RNA was 
extracted at day 4 and sequenced using the Illumina HiSeq system. (C) Bioinformatic analysis was performed to analyze and correlate the clinical spec-
imen and in vitro model data sets to identify key regulatory pathways. (D) Pathways upregulated in patients with TB were inhibited in the 3D model to 
determine the effect on the host-pathogen interaction.
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gene was MMP1 (Matrix Metalloproteinase 1; Supplemental Fig-
ure 7B). Gene set enrichment analysis identified the lytic vacuole 
membrane (Supplemental Figure 8A) and KEGG lysosome path-
way (Supplemental Figure 8B) as the only components downregu-
lated in TB relative to sarcoidosis.

(Supplemental Figure 7A). The most significantly upregulated pro-
cess was the cytokine-mediated signaling pathway, including many 
genes already implicated in TB pathogenesis, such as IL1B, CCL2, 
CXCL9, CXCL10, HIF1A, and MMP1 (11), along with novel genes 
such as SPHK1. Within this group, the most highly upregulated 

Figure 2. Gene expression in TB and sarcoidosis has significant overlap. (A) PCA plot of whole transcriptome data demonstrates separation of the control 
group from diseased lymph nodes (purple), while the TB (orange) and sarcoidosis (blue) samples overlap. (B) Hierarchical clustering heat map of top 50 most 
variable genes using Spearman correlation and complete linkage. Control samples (purple) cluster separately to the TB (orange) and sarcoidosis (blue) sam-
ples, which show no differentiation. (C) Venn diagram of the number of upregulated genes in TB (orange) and sarcoidosis (blue) relative to control, confirming 
numerous shared genes (log2 fold change ≥ 1.5, adjusted P value < 0.05). (D) Venn diagram of the number of downregulated genes in TB (orange) and sarcoid-
osis (blue) relative to control (log2 fold change ≥ 1.5, adjusted P value < 0.05). (E and F) Volcano plots of differentially expressed genes in TB (E) and sarcoidosis 
(F) plotting the log2 fold change on the x axis and adjusted P value on the y axis. Gray: similarly expressed genes; green: genes with absolute log2 fold change 
≥ 1.5; blue: genes with adjusted P value < 0.05; red: genes exceeding both thresholds. More genes are upregulated in TB, and to a higher fold change, than in 
sarcoidosis. Horizontal dashed line denotes adjusted P value of 0.05, vertical dashed line denotes absolute log2 fold change of 1.5.
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(blue). Inspection of individual genes revealed that the TB-specific  
DEGs are mainly located in the extracellular environment and 
are often metal binding, while sarcoidosis only DEGs are located 
intracellularly or at the plasma membrane and are often associat-
ed with neural development and protein synthesis (Supplemental 
Table 10). DEGs shared by both diseases are mainly located extra-
cellularly and relate to the immune response or the extracellular 
matrix (Supplemental Table 10).

Analyses of the top 10 upregulated REACTOME pathways in 
TB relative to control samples confirmed immunological pathways 
and extracellular matrix turnover as predominant processes (Figure 
3D). In contrast, downregulated genes in TB primarily relate to chro-
matin organization and RNA and protein metabolism (Supplemen-
tal Figure 10). Gene set enrichment analysis of the top 10 canonical 
pathways in both TB and sarcoidosis demonstrated the most over-
expressed pathways relative to control samples were extracellular 
matrix-related, both in TB (Supplemental Figure 11A) and sarcoid-
osis (Supplemental Figure 11B). As this analysis was from lymph 
node biopsies, we investigated compartment-specific effects rela-
tive to published data sets that used RNAseq methodology to allow 
a consistent analysis pipeline (12, 13). Analysis of the lung RNAseq 
study identified a total of 29 statistically significant upregulated 
REACTOME pathways in TB (Supplemental Table 11), whereas our 
microdissection approach of lymph nodes identified 278 pathways 
(Supplemental Table 12). The lung study was smaller, studying 5 TB 
samples; included patients already on antibiotic treatment; and did 
not capture the granuloma microenvironment by microdissection, 
potentially reducing power and introducing confounders. The top 
10 pathways upregulated in the lung were replicated in the lymph 
node analysis more frequently than the peripheral circulation, while 
several of the downregulated pathways in the lung were upregulat-
ed in blood (Supplemental Figure 12).

The 3D collagen granuloma model most closely replicates gene 
expression in clinical TB samples. To translate the insights from clin-
ical sample analysis toward new therapeutic targets, we proceeded 
to perform cell culture studies. In order to determine a model of 
TB that can best represent clinical TB, we first compared 3 prima-
ry human PBMC cell culture models using the same bioinformatic 
pipeline as applied to the clinical sample analysis. The 2D model 
studied was PBMCs infected with Mtb under standard tissue cul-
ture conditions, while both 3D models involved overnight infection 
of PBMCs with Mtb (day 0) and then resuspension in matrix that 
was encapsulated into 3D microspheres by bioelectrospray meth-
odology. Cells in the 3D alginate model were encapsulated in algi-
nate matrix, whereas the 3D collagen model used alginate-colla-
gen matrix as previously described (14). Within this system, Mtb 
is phagocytosed by monocytes (15), which then differentiate into 
CD68+ macrophages over time (14). The change in gene expres-
sion 4 days after Mtb infection relative to uninfected cells was 
compared with clinical TB samples for upregulated (Supplemental 
Figure 13A and Supplemental Table 13) and downregulated DEGs 
(Supplemental Figure 13B and Supplemental Table 14). Overall, the 
2D model displayed the highest number of DEGs with 944 genes, 
though only one-tenth of these overlapped with clinical TB sam-
ples, with 79 upregulated and 21 downregulated genes. The 3D algi-
nate model was the most inert model, with 100 DEGs observed, of 
which 49 upregulated and 1 downregulated gene were in common 

A TB-unique cluster primarily relates to inflammation and the 
extracellular matrix. Correlation analysis using Markov Cluster 
Algorithm (Graphia Pearson r = 0.83, MCL = 1.7) of DEGs identified 
in comparison of the 3 clinical groups (TB relative to control, sar-
coidosis relative to control, and TB relative to sarcoidosis samples) 
(Supplemental Tables 3 and 4) demonstrated multiple clusters of 
upregulated and downregulated genes (Figure 3A). Of note, Cluster 
21 was the only one uniquely upregulated in TB (Figure 3B). Cluster 
21 comprised 7 genes including MMP1, plus the divalent transition 
metal transporter SLC11A1 (solute carrier family 11 member 1, for-
merly known as NRAMP1), monocyte chemoattractants CCL7 and 
CCL8 (C-C motif chemokine ligand 7 and 8), OLR1 (oxidized low 
density lipoprotein receptor 1, formerly known as LOX1), FAM124A 
(family with sequence similarity 124 member A), and LGALS17A 
(galectin 14 pseudogene). Gene ontology performed on these 7 
genes generated multiple biological processes and pathways with 
significance after correcting for FDR, implicating a central role for 
the inflammatory response and extracellular matrix turnover in TB 
pathogenesis (Supplemental Table 8).

Further analysis of TB-predominant Clusters 2, 7, and 8 iden-
tified that the inflammatory response, extracellular matrix, wound 
healing, and nucleotide metabolism feature significantly on gene 
ontology analysis (Supplemental Figure 9, A–C and Supplemental 
Table 9). In contrast, the only sarcoidosis-predominant gene clus-
ter, Cluster 14, comprised 9 genes such as ATP6V0D2 (ATPase H+ 
transporting V0 subunit D2), CHIT1 (Chitinase 1), and FAIM2 (Fas 
apoptotic inhibitory molecule 2). Analysis of cellular components 
using gene ontology demonstrated overexpression of the lyso-
some, but did not generate any significant biological processes or 
pathways using the same analytical approach (Supplemental Fig-
ure 9D and Supplemental Table 9).

Contrasting the expression of the top 10 DEGs most signifi-
cantly upregulated for each condition, that are specific to TB only, 
sarcoidosis only, or communal to both according to fold change 
clearly separated the groups (Figure 3C and Supplemental Table 
10). However, except for CCL7 and MMP1, all genes in the TB only 
group (orange) were also overexpressed in the sarcoidosis samples 

Figure 3. TB and sarcoidosis have disease-specific gene clusters. (A) Cor-
relation analysis performed using Markov Cluster Algorithm (Pearson’s  
R of 0.83) with genes of absolute log2 fold change ≥ 1.5 and adjusted P value 
< 0.05. Each node (circle) depicts a transcript/gene, each edge (line) depicts 
Pearson’s correlation value. The left branches display clusters upregulat-
ed in TB and sarcoidosis, and the right branches display clusters that are 
downregulated. Several coregulated clusters are observed. Cluster 21 (blue) 
is the only cluster specific to TB and comprises the 7 annotated genes. (B) 
Average (mean) normalized gene expression level in Cluster 21 comparing 
control (n = 7), sarcoidosis (n = 10), and TB samples (n = 7). Gene expression 
values after TMM normalization used. Box-and-whisker plot with median 
values (line). Whiskers represent minimum and maximum values, boxes 
represent the 25th to 75th percentiles. (C) Heat map arranged according 
to top 10 disease-specific upregulated genes based on fold change. Using 
TB-specific (orange), sarcoidosis-specific (blue), and jointly regulated genes 
(pink), a clear distinction between control, TB, and sarcoidosis is observed. 
(D) Gene ontology enrichment (ReactomePA program in R, using genes with 
adjusted P value < 0.05) showing the top 10 upregulated REACTOME path-
ways in TB relative to control. Immune processes and extracellular matrix 
turnover are highly represented. Dot size represents number of expressed 
genes in the pathway, shade of color represents adjusted P value.
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Figure 4. The 3D granuloma model with alginate-collagen matrix most closely reflects clinical TB gene expression. Gene ontology enrichment (Reac-
tomePA program in R, using genes with adjusted P value < 0.05) showing the top 20 REACTOME pathways upregulated and downregulated in human TB 
granulomas relative to control tissue, according to adjusted P value. Pathways are ordered within in each gene ontology category according to adjusted P 
value (Clinical TB), and gene ontology category is depicted by color. Significant fold change expression for each pathway denoted across different cell culture 
models. Red: pathways significantly upregulated in category; blue: pathways significantly downregulated in category (adjusted P value < 0.05 for each).
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with clinical TB. The 3D collagen model had 482 DEGs, of which 
158 upregulated and 7 downregulated genes overlapped with clini-
cal TB samples, and so shared the greatest number of genes.

Gene ontology analysis of DEGs demonstrates that the 3D col-
lagen model reflects the top 20 REACTOME pathways upregulated 
and downregulated in clinical TB more closely than the other models 
(Figure 4). The 3D collagen model represents upregulated pathways 
in clinical TB associated with the immune system, hemostasis, and 
signal transduction, as well as downregulated pathways relating to 
metabolism of proteins and RNA. The 3D alginate model has upregu-
lation of several pathways in clinical TB associated with the immune 
system, but no downregulated pathways overlapping with clinical TB. 
In contrast, the 2D model correlates with only 4 upregulated path-
ways in clinical TB, all immune pathways, and demonstrates diver-
gent regulation of several pathways in the opposite direction to the 
clinical samples. Next, we compared pathways regulated by infection 
in the 3D collagen model with gene expression profiles in the circu-
lation of patients with TB, and found high overlap and concordance 
of modulated pathways (Supplemental Figure 14). Therefore, we pro-
gressed to our mechanistic studies in the 3D collagen model.

Comparison of clinical samples and the 3D granuloma model iden-
tifies potential therapeutic target genes. Initial transcriptomic analysis 

of uninfected and Mtb-infected PBMCs from 6 healthy donors using 
principle component analysis in the 3D collagen model demonstrat-
ed general separation of groups, with overlap of 1 uninfected and 1 
infected microsphere sample that may reflect donor variation (Fig-
ure 5A). Using gene set enrichment analysis, the top 10 canonical 
pathways upregulated in the 3D collagen model relate to the extra-
cellular matrix and cytokine signaling (Figure 5B), similar to that 
observed in clinical TB samples (Supplemental Figure 11A).

Next, we compared all significantly upregulated genes in the 
3D collagen model, including those with log2 fold change below 
1.5, with the upregulated genes previously identified in clinical TB 
samples. DEGs from clinical TB were categorized into 2 groups, 
TB only or shared between TB and sarcoidosis, to determine if 
targeting pathways unique to TB or shared with sarcoidosis had 
divergent effects. This identified 181 genes upregulated in clinical 
TB and the 3D collagen model (Figure 5C and Supplemental Table 
15), and 177 upregulated genes upregulated in both TB and sar-
coidosis that were also induced in the 3D collagen model (Figure 
5D and Supplemental Table 16).

Selection of candidate host-directed therapy targets. We then 
applied a systematic approach to host-directed therapy (HDT) target 
selection, beginning with the 181 genes upregulated in TB only and 

Figure 5. Mtb infection of PBMCs in the 3D collagen model upregulates multiple genes that overlap with clinical TB specimens. (A) PCA of whole transcrip-
tome data showing differentiation of gene expression between uninfected (blue) and Mtb-infected (red) PBMCs in the 3D collagen model in 6 healthy donors. 
(B) Top 10 overexpressed canonical pathways according to Normalized Enrichment Score (NES) in Mtb-infected relative to uninfected cells in the 3D collagen 
model (Gene Set Enrichment Analysis). Adjusted P value < 0.01. (C) Overlap of genes upregulated uniquely in clinical TB samples (orange) and the 3D collagen 
model (purple). (D) Overlap of genes upregulated consistently in both TB and sarcoidosis (orange) and the 3D collagen model (purple). Thresholds in clinical 
samples of log2 fold change ≥ 1.5 and adjusted P value < 0.05, and thresholds in the 3D collagen model of log2 fold change ≥ 0.18 and adjusted P value < 0.05.
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increase cytotoxicity (Figure 7C), while brinzolamide, a CA2 inhib-
itor, caused increased cytotoxicity (Supplemental Figure 15K). 
To exclude a direct effect on Mtb growth, inhibitors were added 
to Mtb cultured in Middlebrook 7H9 broth. PF-543 did not affect 
Mtb growth, whereas SSM3 trifluoroacetate caused significant Mtb 
growth reduction (Figure 7D). Therefore, suppression of Mtb growth 
by PF-543 requires PBMCs, indicating that the effect is most likely 
via modulating host signaling pathways. SphK1 is a key regulator of 
the ceramide-sphingosine rheostat, which controls diverse cellular 
processes, and so the expression of enzymes involved in this path-
way was analyzed in the clinical TB samples. SPHK1 and SGPL1, the 
gene encoding S1P lyase, were upregulated in TB granulomas, while 
CERS4 (ceramide synthase 4) was downregulated (Figure 7E). The 
overall impact of these expression changes on the ceramide/sphin-
gosine axis would favor the production of S1P (sphingosine-1-phos-
phate) and irreversible degradation by S1P lyase, resulting in con-
current depletion of ceramide stores.

SphK1 blockade modulates intracellular acidification and inflam-
matory mediator secretion. To explore this phenomenon further, 
we first studied K6PC-5, a specific activator of SphK1 (17). K6PC-
5 increased Mtb growth within the 3D collagen model, in contrast 
to suppression by the inhibitor PF-543 (Figure 8A), confirming 
SphK1 activity favors Mtb growth. Colony counting confirmed that 
reduced luminescence in PF-543–treated cells was due to bacteri-
al killing (Figure 8B). We observed the effect of PF-543 as early as 
2 hours after the addition of PF-543, and we hypothesized that the 
mechanism may center on phagolysosomal fusion, which is delayed 
in Mtb-infected cells (18). We studied changes in intracellular pH by 
staining cells with pHrodo, which increases fluorescence at low pH 
(19). Mtb infection reduced fluorescence of monocytes compared 
with uninfected cells, consistent with inhibition of phagolysosomal 
fusion, while PF-543 normalized fluorescence to that of uninfected 
cells (Figure 8C). In contrast, Bafilomycin A1, a lysosomal inhibitor, 
did not cause an increase in fluorescence in infected monocytes, 
and K6PC-5 did not have an effect (Supplemental Figure 16A). We 

177 TB-sarcoidosis genes (Figure 6). First, we selected intracellular 
enzymes as potentially tractable targets for orally available inhib-
itors, an important consideration for resource-poor settings. We 
identified 90 enzymes, of which 36 had validated chemical inhib-
itors available. Target specificity for each compound was reviewed, 
and inhibitory drugs with multiple targets were excluded. Published 
drug toxicity data were analyzed, with prioritization of drugs with 
proven safety in either human or in vivo systems and no evidence of 
toxicity. The final factors examined were the DEG fold change val-
ues in the clinical TB samples and Mtb-infected 3D collagen model, 
and transcript abundance in the clinical TB samples. This process 
identified 12 intracellular HDT targets, 7 in the TB only group (CA2, 
CTSL, FURIN, LRRK2, NAMPT, RIPK2 and SPHK1) and 5 commu-
nal to TB and sarcoidosis (FADS2, HK2, HSD11B1, SRC, TYMP).

Sphingosine kinase 1 (SphK1) inhibition suppresses Mtb growth 
in the 3D collagen model. To investigate the effect of targeting the 
pathways identified through this unbiased approach, we studied 
the effect of inhibitors added to the 3D collagen model at day 1. 
Inhibitors were added at a concentration determined by published 
studies, which are detailed in Supplemental Table 17. Mtb lumines-
cence was observed within 2 hours of drug application, after 24 
hours (day 2), and then on days 4, 7, 9, 11, and 14. Inhibitors were 
supplemented at day 7, after Mtb luminescence readings were 
taken. PF-543, a specific inhibitor of SphK1 (16), caused the most 
marked suppression of Mtb growth in a dose-dependent manner, 
even at the initial reading taken at 2 hours (Figure 7A). SSM3 triflu-
oroacetate, a furin inhibitor, also demonstrated a dose-dependent 
reduction in Mtb growth (Figure 7B). To a lesser degree, SC 26196, 
a FADS2 inhibitor (Supplemental Figure 15C) and 3-Bromopyruvic 
acid, a HK2 inhibitor (Supplemental Figure 15D), also significantly 
suppressed Mtb growth. The other 8 inhibitors investigated did not 
affect Mtb growth (Supplemental Figure 15, A, B, and E–J).

In order to determine if suppression of Mtb growth was due 
to increased cell death, cytotoxicity studies were performed for 
PF-543 and the other 11 inhibitors. PF-543 did not significantly 

Figure 6. Systematic selection process to identify potential host-directed therapy targets. Upregulated genes that were exclusive to TB granulomas or 
shared between TB and sarcoidosis granulomas, and that were also upregulated in the 3D collagen model, were systematically refined using the criteria 
listed. This process identified 12 host-directed therapy targets for experimental inhibition in the 3D collagen model. Thresholds used for initial gene selection 
were log2 fold change ≥ 1.5 with adjusted P value < 0.05 in clinical samples, and log2 fold change ≥ 0.18 with adjusted P value < 0.05 in the 3D collagen model.



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

9J Clin Invest. 2021;131(15):e148136  https://doi.org/10.1172/JCI148136

multinucleate giant cells within TB granulomas were immunoreac-
tive for SphK1 (Figure 8, G–I). SphK1 expression was observed in a 
subset of granuloma macrophages, and was very rarely observed in 
macrophages distal to the granuloma or in normal lung tissue.

Discussion
Through a combination of transcriptomic analysis of treatment-na-
ive clinical lymph node samples alongside a biomimetic TB granu-
loma model, this study explored processes dysregulated in human 
TB and identified novel potential therapeutic pathways. The prima-
ry pathways dysregulated in TB related to excessive inflammation 
and extracellular matrix degradation. SphK1 emerged as an import-
ant regulator, with inhibition of SphK1 leading to rapid Mtb death 
and suppression of inflammatory mediator secretion. Furthermore, 

performed kinetic analysis of intracellular pH, to determine if the 
reduced pH was maintained, and demonstrated that increased flu-
orescence in PF-543–treated cells persisted for 40 minutes when 
analyzed by both the pHrodo assay (Figure 8D) and also LysoSen-
sor, a second intracellular pH assay (Supplemental Figure 16B). 
PF-543 had such a rapid effect that fluorescence already diverged in 
the time between addition of PF-543 to the cells and the first read-
ing, and fluorescence increased further before stabilizing. SphK1 
inhibition also suppressed secretion of inflammatory mediators 
upregulated in TB identified in the clinical sample analysis, such as 
CCL2 (Figure 8E) and MMP-1 (Figure 8F). Finally, to investigate the 
translational potential of targeting SphK1 in patients and to identify 
the cellular origin, we performed immunohistochemical analysis of 
lung biopsies from patients with TB. Epithelioid macrophages and 

Figure 7. SphK1 inhibition suppresses Mtb growth. (A) Mtb growth in 3D collagen model measured by luminescence (relative light units [RLU]): untreated 
(black circles), treated with DMSO (black squares), SphK1 inhibitor PF-543 (green triangles). Black arrows indicate drug addition on days 1 and 7. Analysis was 
by 2-way ANOVA; error bars indicate SD. (B) Mtb growth in 3D biomimetic model cultures untreated (black circles), or treated with DMSO (black squares) or 
furin inhibitor SSM3 trifluoroacetate (pink triangles). Black arrows indicate drug addition. Analysis was by 2-way ANOVA; error bars indicate SD. The same 
controls are presented in Figure 7, A and B and Supplemental Figure 15, A–J, and all conditions were compared simultaneously against the control by Dunnett’s 
multiple comparison test. (C) Relative cytotoxicity in 3D collagen model with SphK1 inhibition: untreated (black circles), or treated with DMSO (black squares) 
or SphK1 inhibitor PF-543 (green triangles). Horizontal bars indicate mean, error bars indicate SD. (D) Mtb growth in Middlebrook 7H9 broth culture: untreated 
(black circles), or treated with DMSO (black squares), SphK1 inhibitor PF-543 (green triangles), or furin inhibitor SSM3 trifluoroacetate (pink triangles). Analysis 
was by 2-way ANOVA; error bars indicate SD. (E) Graphical representation of changes in sphingolipid signaling pathway genes in TB granulomas relative to 
control lymph nodes (adjusted P value < 0.05 for SphK1 and S1P lyase, otherwise more than 0.05). CDase, ceramidase; CerS, ceramide synthase; S1P, sphin-
gosine-1-phosphate; SPP, sphingosine-1-phosphate phosphatase; PEA, phosphoethanolamine. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Figure 8. SphK1 regulates the host-pathogen interaction in TB and is expressed in human granulomas. (A) Mtb growth detected in 3D collagen model 
measured by luminescence (RLUs): untreated (black circles), DMSO (black squares), SphK1 inhibitor PF-543 (green triangles), and SphK1 activator K6PC-5 
(orange triangles). Black arrows: drug addition on days 1 and 7. Analysis was by 2-way ANOVA; error bars indicate SD. (B) Mtb CFUs from PBMCs in 3D 
collagen microspheres, decapsulated and plated on Middlebrook 7H11 agar: DMSO 0.1% (black circles), SphK1 inhibitor PF-543 (green triangles), SphK1 
activator (orange triangles). Difference analyzed by paired t test. Horizontal bars indicate mean, error bars indicate SD. (C) Relative fluorescence signal in 
human monocytes stained with pHrodo measured 5 minutes after treatment with DMSO 0.1% and Mtb infection with or without concurrent addition of 50 
μM PF-543. Increased fluorescence signal indicates lower pH. Normalized data from 2 separate donors, analyzed by paired t test. Horizontal bars indicate 
mean, error bars indicate SD. (D) Relative fluorescence signal in human monocytes stained with pHrodo, measured at 5 minute intervals after Mtb infec-
tion for 40 minutes, treated with DMSO 0.1% (black circles) or 50 μM PF-543 (green triangles). Normalized data shown from one donor. Horizontal bars 
indicate mean, error bars indicate SD. (E) Secretion of CCL2 and (F) MMP-1 from 3D collagen model into tissue culture media on day 7 after Mtb infection: 
treated with DMSO 0.1% (black circles), SphK1 inhibitor PF-543 (green triangles), or SphK1 activator (orange triangles). Analyzed by paired t test. Horizontal 
bars indicate mean, error bars indicate SD. (G, H, and I) Immunohistochemistry of human lung TB granulomas stained with SphK1 antibody. No reactivity 
is observed without antibody (G), while SphK1 expression is demonstrated in a subset of macrophages and multinucleate giant cells (brown stain, H and I). 
Scale bars: 50 μm (G and H), 25 μm (I). *P < 0.05, **P < 0.01.
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ago (32). SLC11A1 exerts pleiotropic effects on macrophage function 
that will increase inflammation, including enhanced expression of 
MHC class II, cytokines such as TNF-α and IL-1β, and inducible 
nitric oxide synthase (33). The high expression of chemokines CCL7 
(MCP3) and CCL8 (MCP2) supports the emerging concept that 
excessive monocyte recruitment is harmful in TB (34). LGALS17A 
and FAM124A may augment inflammation through NFκB activa-
tion (35), though their roles are less well defined. OLR1 can regu-
late foamy macrophage formation, a typical feature of the human 
TB granuloma (36), and contributes to excessive inflammation in 
atherosclerosis and myocardial ischaemia (37, 38). Moreover, OLR1 
activation induces epigenetic reprogramming in macrophages (39), 
suggesting trained immunity may contribute to the hyperinflamma-
tory state observed in TB. Considering this cluster of 7 TB-specific 
genes together implies that dysregulated inflammation is a sequen-
tial process, whereby excessive monocytes are recruited to the gran-
uloma (CCL7 and CCL8), reprogrammed to a hyperinflammatory 
phenotype (OLR1), further propagating inflammation (SLC11A1) 
and NFκB activation (FAM124A), resulting in extracellular matrix 
degradation (MMP1), cavity formation, and transmission.

Differential gene analysis further informs comparisons 
between sarcoidosis and TB, whereby the most significantly dys-
regulated biological process was the cytokine-mediated signaling 
pathway, comprising of upregulated genes including SPHK1, MMP1, 
and both proinflammatory and immunoregulatory cytokines. Other 
upregulated processes in TB compared with sarcoidosis centered 
on angiogenesis and extracellular matrix degradation. The only 
cellular component significantly downregulated in TB relative to 
sarcoidosis is the lysosome, which is critical in antigen processing 
(40). The pathways that we identified only show partial overlap with 
RNAseq analysis of circulating immune cells from TB patients (41, 
42), demonstrating the importance of studying tissue in investigat-
ing local pathogenic mechanisms. Consistent with this observa-
tion, the majority of genes identified as potential HDT targets were 
also upregulated in granulomas from patients undergoing surgery 
for TB treatment failure analyzed by microarray (43). Our data set 
is unique in analyzing human TB biopsies pretreatment with the 
microenvironment sampled by laser capture microdissection, with-
out the confounder of treatment. However, our samples were from 
lymph nodes as opposed to the lung parenchyma, and so compart-
ment-specific differences are likely. An ideal comparator would be 
lung, lymph node, and blood from the same patient taken before 
treatment, with each tissue microenvironment spatially analyzed. 
However, recruiting such a cohort may be logistically impossible.

Evaluation of the potential therapeutic targets identified from 
the clinical samples requires study in an appropriate cell culture 
model. Bioinformatic analysis of standard 2D cell culture, 3D algi-
nate, and 3D collagen models identified that the 3D collagen mod-
el has the most overlap with clinical TB samples, consistent with 
the emerging importance of 3D models incorporating extracellu-
lar matrix to understand biological phenomena (44, 45). Such bio-
mimetic models are advancing the field of cancer immunotherapy 
(46), and we demonstrate similar applicability for infectious dis-
ease. Previously, our group has shown that the 3D collagen model 
can identify harmful effects of an excessive immune response in 
TB (14), dissect the mechanism whereby PD-1 inhibition leads to 
TB reactivation (47), and study the protective effect of IL-17 (48).

SphK1 is overexpressed in human TB granulomas. Overall, our 
approach of integrated analysis of human clinical tissue alongside 
a biomimetic 3D model provides a translational pipeline to identify 
new therapies and dissect their underlying mechanism of action.

TB shares many histological and clinical features with sarcoid-
osis, and so we included sarcoidosis as an important noninfectious 
granuloma comparator group. In the preantibiotic era, one-third of 
those with active pulmonary TB spontaneously recovered (8), while 
sarcoidosis regresses without treatment in two-thirds of individuals 
(5, 20), indicating a fine balance between disease persistence and 
granuloma resolution. Our RNAseq analysis of granulomas isolated 
from TB and sarcoidosis biopsies provides deep insight into disease 
mechanisms, identifying hundreds of differentially expressed genes 
compared with control lymph nodes. Many dysregulated pathways 
are shared between the 2 diseases and fall into expected categories, 
such as chemokine and interferon signaling (21) and extracellular 
matrix organization (20). However, some pathways were relatively 
unexpected, such as lysosomal pathways, which have not previously 
been identified as being important in sarcoidosis (20). We observed 
overlap between the TB signature and autoimmune diseases such as 
rheumatoid arthritis, consistent with emerging evidence of shared 
underlying pathways (22). Of note, while many pathways were shared 
between TB and sarcoidosis, they were often dysregulated to a higher 
degree in TB, implying that the degree of immune activation may be 
critical in determining whether the outcome is protective or delete-
rious to the host (23). Identification of gene clusters specific to each 
disease permitted unique insight into the underlying pathophysio-
logical mechanisms that led to the differential outcomes, despite the 
extensive overlap in expression patterns and histological similarities.

A defining characteristic of human TB is lung destruction 
and cavitation, leading to morbidity, mortality, and transmission. 
Matrix metalloproteinases play a central role in lung matrix turn-
over (24). MMP1, also known as interstitial collagenase, is among 
the top 10 upregulated genes according to fold change in TB com-
pared with control samples, and degrades lung extracellular matrix 
in TB (25). Furthermore, MMP1 was the most upregulated gene in 
TB compared with sarcoidosis, with the highest fold change (log2 
fold change 7.6) of all differentially expressed genes, and notably, 
TB causes much more extensive lung matrix destruction than sar-
coidosis. The mouse lacks a functional orthologue of MMP1 (26), 
potentially explaining why immunopathology differs in the mouse 
model of TB. Prior studies from our group infecting mice expressing 
a human MMP-1 transgene demonstrated a critical role for MMP-
1 in TB immunopathology (25, 27). However, therapeutic target-
ing of MMPs in animal models have provided mixed results, with 
inhibitor monotherapy paradoxically worsening pathology (28, 29), 
while beneficial when combined with antibiotics (30), suggesting 
efficacy requires concurrent MMP inhibition and bacterial killing. 
Supporting this, a phase 2 clinical trial has shown that adjunctive 
doxycycline, a broad spectrum MMP inhibitor, alongside standard 
antibiotic treatment of patients with pulmonary TB, reduces MMP 
expression and cavity volume (31).

Correlation analysis identified a cluster of 7 genes that were TB 
unique, including MMP1 and SLC11A1, CCL7, CCL8, LGALS17A, 
FAM124A, and OLR1, suggesting that these genes play a central role 
in TB pathogenesis. Notably, SLC11A1 (NRAMP1) polymorphisms 
were the first to be linked to TB susceptibility more than 20 years 
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all biopsy samples are from treatment-naive patients. To maximize 
efficiency of library chip use for RNAseq, a total of 24 samples were 
planned. Eleven samples from each clinical group were initially pro-
cessed to provide an excess of samples and optimize chances of 
obtaining adequate RNA yield for RNAseq (Supplemental Figure 1).

TB biopsies were culture positive for drug-sensitive Mtb and had 
typical TB caseating granulomas, taken from either mediastinal or 
neck lymph nodes. All patients had negative HIV serology and no sig-
nificant comorbidities. The patients’ mean age was 36 years old (23 to 
56 years old); there were 6 males and 5 females.

Sarcoidosis biopsies had classical sarcoidosis granulomas in 
mediastinal lymph nodes. All patients had negative Mtb culture 
results and no positive HIV serology (HIV serology was negative or 
not performed). Three patients had comorbidities, specifically mild 
ulcerative colitis, chronic kidney disease stage IV, and diabetes mel-
litus type 2, though none had received immunosuppressant therapy. 
The patients’ mean age was 59 years old (39 to 76 years old); there 
were 4 males and 7 females.

Reactive lymph nodes from patients with newly diagnosed can-
cer were selected as control samples, with no evidence of metasta-
ses. No patients had positive Mtb culture or positive HIV serology. 
The patients’ mean age was 57 years old (26 to 70 years old); there 
were 7 males and 4 females.

Laser capture microdissection of clinical biopsies. All instruments 
and tools were cleaned with RNaseZap RNase Decontamination 
Solution (RNaseZap RNase decontamination wipes, Life Technolo-
gies). FFPE biopsy blocks were cut with a Leica RM2135 microtome. 
After discarding the first 20 μm, sections of 10 μm thickness were cut, 
floated in RNase-free water (UltraPure DNase/RNase-Free Distilled 
Water, Life Technologies) at 45°C, mounted on PEN (polyethylene 
naphthalate) membrane glass slides (Life Technologies), and dried in 
a drying oven at 37°C overnight. To dewax, the sections were twice 
immersed in Xylene (Arcturus Paradise Plus Staining components, 
Life Technologies) for 5 minutes at a time. No staining of tissue was 
required. To remove the Xylene, sections were twice immersed in 
100% EtOH (Absolute 200 Proof, Molecular Biology Grade, Fisher 
BioReagents) for 1 minute at a time, then left to air dry for up to 1 hour. 
The laser capture microdissection instrument (Zeiss PALM MicroBe-
am) was optimized (energy 66, speed 10%, and focus 75). From each 
biopsy, sequential areas were captured until a total of 8 mm2 had been 
dissected, acquiring 4 mm2 per capture tube (Zeiss AdhesiveCap 500 
opaque). In initial optimizations, this area yielded sufficient RNA for 
subsequent sequencing. Thereafter, each tube sample was exposed 
to 100 μL digestion buffer, then 4 μL protease, and the tubes incubat-
ed in heat blocks at 50°C for 30 minutes, and then 80°C for 14 min-
utes to inactivate the protease. Each tube was subsequently frozen 
at –80°C. Digestion buffer and protease were from RecoverAll Total 
Nucleic Acid Isolation Kit for FFPE (Invitrogen).

Total RNA extraction from clinical samples. Micro Filter Cartridges 
were from RNAqueous-Micro Total RNA Isolation Kit (Invitrogen). 
Samples were thawed at room temperature. Isolation buffer was 
mixed with each sample and up to 500 μL loaded on to a prepared 
Micro Filter Cartridge Assembly. As per kit instructions, each Micro 
Filter Cartridge Assembly was centrifuged, Wash 1 Solution and 
Wash 2/3 Solution used to isolate total RNA, and DNase mix then 
applied. RNase-free water (UltraPure DNase/RNase-Free Distilled 
Water, Life Technologies) was used for elution at a volume of 12 μL, 

To translate the bioinformatic analysis toward clinical applica-
tion, we focused on intracellular kinases as potential therapeutic 
targets, as orally available signaling pathway inhibitors have proven 
clinical utility, such as aspirin, indomethacin, and imatinib. With-
in the 358 upregulated genes in TB shared with the 3D collagen 
model, many additional potential therapeutic targets have not yet 
been investigated. A systematic screening approach demonstrated 
that SphK1 inhibition suppresses Mtb growth within the granuloma 
model independent of an effect on Mtb. SphK1 is a critical enzyme 
in the sphingosine-ceramide cellular rheostat, which modulates 
diverse cellular processes (49). SphK1 phosphorylates sphingosine 
to sphingosine-1-phosphate (S1P), which is then irreversibly degrad-
ed by S1P lyase. S1P is a signaling molecule with a complex mecha-
nism of action, regulating diverse processes including transcription, 
angiogenesis, atherosclerosis, apoptosis, and autophagy (50). By 
diverting the sphingolipid pathway away from S1P synthesis, SphK1 
inhibition will concurrently increase cellular ceramide levels (16).

SphK1 inhibition suppressed Mtb growth surprisingly rapidly, 
and this suggested that the mechanism may be through increas-
ing phagolysosomal fusion, which Mtb inhibits as part of its intra-
cellular survival strategy (18, 51). Consistent with this conclusion, 
SphK1 inhibition normalizes intracellular pH, and previous studies 
have shown that ceramide accumulation increases phagolysosomal 
fusion. Ceramide accumulates and causes Mtb killing by regulating 
actin nucleation (52), although a report from an alternative 2D mod-
el system differs from this conclusion (53). Taking these findings 
into account with our observations suggests that directing sphin-
gosine metabolism to S1P, and away from ceramide, is part of Mtb’s 
intracellular survival strategy. However, an emerging concept is that 
diverse endotypes exist in TB (54), and so it may emerge that target-
ing the sphingosine pathway will work in some, but not all, clinical 
manifestations of TB. SphK1 inhibition has significant potential, 
as activating innate killing will circumvent drug resistance mech-
anisms in TB. However, because mice do not express a functional 
orthologue of MMP-1 (26), the full effect of SphK1 inhibition on TB 
immunopathology will need to be assessed in more complex animal 
model systems prior to human studies.

In summary, a tissue RNAseq approach comparing 2 granulo-
matous conditions provided novel insight into the underlying dis-
ease mechanisms in human TB. Integrating the clinical analysis 
with a 3D biomimetic cellular model to screen for host-directed 
therapy targets identified SphK1 inhibition as a potential approach 
to complement current antibiotic therapy. Enhancing host cell 
mycobacterial killing through this strategy may shorten the dura-
tion of therapy and improve outcomes in disease.

Methods
Clinical sample selection. Clinical samples were selected from adult 
patients undergoing a mediastinal or neck lymph node biopsy, with all 
biopsies performed at University Hospital Southampton NHS Foun-
dation Trust. Biopsies were formalin-fixed and paraffin-embedded 
(FFPE) immediately after the procedure. Each specimen had typical 
histological appearance for each disease and was verified by a con-
sultant histopathologist. Individual patients’ medical records were 
reviewed to exclude confounders, such as ensuring patients were non-
smokers at the time of biopsy and had not received antituberculous or 
immunosuppressant therapy prior to biopsy excision. Consequently, 
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adjusted to 7.4 by adding 5M HCl. The decapsulation solution was 
warmed to 37°C and on day 4 applied to microspheres after washing 
with HBSS. Once decapsulated, the cells were centrifuged at 2000g 
for 8 minutes at 4°C. The same centrifugation was used to pellet 
PBMCs in 2D culture on day 4. After centrifugation, cell pellets were 
resuspended in QIAzol Lysis Reagent (Qiagen) and stored at –80°C.

Total RNA extraction from cell culture models. Samples were 
thawed on ice, and 200 μL chloroform added per 1 mL of sample. 
Samples were shaken for 15 seconds, incubated for 3 minutes at room 
temperature, then centrifuged at 12,000g for 15 minutes at 4°C. The 
upper aqueous layer was extracted. Then manufacturer’s instructions 
were followed (RNeasy Midi Kit, Qiagen), adding 70% ethanol and 
shaking. Samples were added to RNeasy Midi columns, and washed 
with Buffer RW1 and Buffer RPE. Total RNA was eluted with 125 μL 
RNase-free H2O and stored at –80°C. RNA quality and quantity was 
checked by Agilent 2100 Bioanalyzer (Agilent Technologies) and 
NanoDrop ND-1000 UV-Vis Spectrophotometer, respectively.

RNA sequencing of cell culture models. Sequencing was performed 
by GENEWIZ. Thirty-six samples were sequenced using Illumina 
HiSeq, with 12 samples per lane. A configuration of 2 × 150 base 
pairs per lane was used, and a mean average of 31 million paired end 
reads generated and provided in FASTQ format (submitted to GEO 
accession code 174566).

Bioinformatics pipeline for RNAseq analysis. The same bioinfor-
matics pipeline was used to analyze the RNAseq data from clinical 
samples and cell culture samples. FastQC software executed quali-
ty control checks. Alignment was performed using kallisto software 
(version 43.1), with sequence based bias correction (57). The human 
transcriptome and the transcriptome of the Mtb strain H37Rv were 
used as index transcriptomes to which alignment was performed. 
The tximport program (version 1.10.1) imported the reads aligned by 
kallisto (58), and ensembldb program (version 2.6.8) annotated them 
to gene level (59). Sleuth was also used to annotate the data aligned 
by kallisto, to confirm similar results (60). Intersample normalization 
was performed using TMM (trimmed mean of M value) normaliza-
tion (edgeR, version 3.24.3). Unless otherwise stated, all analyses 
were performed and figures generated in R environment including 
principal component analysis, outlier detection, heat map, and vol-
cano plot generation. An interactive tool was used for comparing 
lists with Venn diagrams, https://bioinfogp.cnb.csic.es/tools/venny/
index.html, and Venn diagrams were generated in R environment.

Differential gene analysis was performed using limma with its 
voomWithQualityWeights function (version 3.38.3). Voom transfor-
mation is required for limma to use the Gaussian distribution (61). 
A Benjamini-Hochberg FDR-adjusted P value of less than 0.05 was 
applied. Filter values were optimized to yield the highest number of 
differentially expressed genes across the study cohort.

TMM-normalized, voom-transformed data were taken for-
ward for gene coexpression analysis. Graphia Professional (ver-
sion 2.1) (62) used the Markov Cluster Algorithm to perform cor-
relation analysis with Pearson’s r ≥ 0.83, MCL inflation value of 
1.7, preinflation value of 3, scheme value of 6, and smallest cluster 
allowed of 5 genes. GraphPad Prism 8 was used to plot the expres-
sion intensity of clusters.

Gene sets from the Molecular Signatures Database (MSigDB) 
(version 7.0) were used (63). Two methods were employed: fast gene 
set enrichment analysis (fgsea) program (version 1.8.0) was used to 

and samples stored at –80°C. RNA quality and quantity were checked 
by Agilent 2100 Bioanalyzer (Agilent Technologies) and Qubit 2.0 
Fluorometer (Thermo Fisher Scientific), respectively.

RNA sequencing of clinical samples. Sequencing of clinical sam-
ples was performed at the Kaminski laboratory, Department of Pul-
monary, Critical Care, and Sleep Medicine, Yale School of Medicine. 
Ion Torrent sequencing was used, and all reagents were from Life 
Technologies. Twenty-four samples were prepared to make cDNA 
libraries using Ion AmpliSeq. Human Gene Expression kit (Ion Tor-
rent) using 15 ng total RNA. As per the manufacturer’s instructions, 
the Ion PI Hi-Q Chef Kit on the Ion Chef instrument was used for 
library construction, assembling 2 chips from 8 diluted samples at 
a time. The Ion Proton System was used as per the manufacturer’s 
instructions to sequence RNA. Total RNA of 15 ng per sample was 
used to produce a mean average of 18 million single-end, approx-
imately 100 base pair reads per sample and transferred in FASTQ 
format (GEO accession code GSE174443).

PBMC isolation from human blood. PBMC isolation from single 
leukocyte donor cones (National Health Service Blood and Trans-
fusion, Southampton, United Kingdom) was performed by density 
gradient centrifugation over Ficoll-Paque (GE Healthcare Life Sci-
ences). Blood donors were healthy individuals with negative HIV 
and hepatitis B/C serology living in a low TB endemic area. Six blood 
donors were studied in each of the 3 cell culture models. PBMCs 
were cultured in RPMI 1640 with 10% fetal calf serum, l-glutamine, 
ampicillin, and kanamycin.

M. tuberculosis culture. Bioluminescent H37Rv (55) was used in all 
experiments, and cultured in Middlebrook 7H9 medium supplement-
ed with 10% ADC, 0.2% glycerol, and 0.02% Tween 80 (BD Biosci-
ences) with 25 μg/mL kanamycin. Cultures at 1 × 108 CFU/ml Mtb 
(optical density = 0.6) were used for all experiments at a MOI of 0.1, 
except in pHrodo experiments where a MOI of 1 was used for mono-
cyte infection. Luminescence was measured with a GloMax 20/20 sin-
gle tube luminometer (Promega). Mtb-infected PBMCs were released 
from 3D collagen microspheres by decapsulation and Mtb was cul-
tured after serial dilution on Middlebrook 7H11 agar supplemented 
with 10% OADC, 0.2% glycerol, and 0.4 μg/mL amphotericin.

Microencapsulation of cells. Microspheres were generated using 
an electrostatic generator (Nisco) as previously described (56). To 
summarize, PBMCs were infected overnight with Mtb in a 250 cm2 
flask. The PBMCs were then detached, pelleted, and mixed with 1.5% 
sterile alginate (Pronova UP MVG alginate, Nova Matrix), with or 
without 1 mg/mL collagen (Advanced BioMatrix), at a final concen-
tration of 5 × 106 cells/mL. The cell-alginate suspension was injected 
into the electrostatic generator where microspheres formed in an ion-
otropic gelling bath of 100 mM CaCl2 in HBSS. After twice washing 
with HBSS with Ca2+/Mg2+, microspheres were incubated at 37°C in 
RPMI 1640 medium containing l-glutamine, ampicillin, kanamycin, 
and 10% human AB serum. Microspheres were either placed into 
Eppendorf tubes and randomly allocated to different experimental 
conditions with subsequent Mtb luminescence measured, or placed 
into a 96-well plate with conditions in triplicate according to a pre-
determined template for cytotoxicity studies on day 7. Supernatant 
was collected from Eppendorf tubes on day 7 after luminescence was 
measured. Time points described refer to days after infection.

Microsphere decapsulation and cell lysis. Decapsulation solution 
was 55 mM sodium citrate and 5 mM EDTA with HBSS, with pH 
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Luminex analysis. Samples were sterilized by filtration through 
a 0.22 μm Durapore membrane (Merck Millipore). Concentrations 
of cytokines (Thermo Fisher Scientific) and MMPs (R&D Systems) 
were measured using a Bioplex 200 platform (Bio-Rad) according 
to the manufacturer’s protocol.

Statistics. Experiments were performed on at least 3 occasions 
using PBMCs from 3 separate donors with triplicate conditions. 
Colony forming units were counted from 2 separate donors in trip-
licate. Data presented are from a representative donor and include 
the mean and SD, and are consistent across donors. Analysis was 
performed in GraphPad Prism 8. Student’s t test was used to com-
pare pairs. ANOVA with Dunnett’s correction for multiple compar-
isons was used for groups of 3 or more, where control was DMSO 
for all chemicals reconstituted in DMSO, and control was Mtb only 
for those reconstituted in water.

Study approval. Analysis of PBMCs was approved by the Nation-
al Research Ethics Service Committee South Central–Southamp-
ton A (ethics approval reference 13/SC/0043). All donors gave 
written informed consent. Histological analysis of biopsy samples 
was approved by the Southampton Research Biorepository (ethics 
approval reference 12/NW/0794 SRB04_14). Lymph node biopsy 
tissue was taken as part of routine clinical care for diagnostic pur-
poses, and surplus tissue was analyzed in this study at a later date. 
The ethics committee approved the analysis of this archival tissue 
without individual informed consent since the tissue was taken as 
part of routine care.
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generate Normalized Enrichment Scores; and Ensemble of Gene 
Set Enrichment Analyses (EGSEA) using 11 prominent algorithms 
(camera, gage, globaltest, gsva, ora, padog, plage, roast, safe, ssgsea, 
zscore) to visualize pathways and generate fold change values identi-
fied by gene set enrichment analysis (version 1.10.1) (64).

Gene ontology enrichment analysis for differentially expressed 
genes was performed using ReactomePA software program (version 
1.26.0) (65), while ToppFun functional enrichment in ToppGene 
suite (66) was used to analyze clusters identified on correlation anal-
ysis. An adjusted P value of less than 0.05 was taken as significant.

Chemical inhibitors and supplementation. The following chem-
ical inhibitors were from ApexBio: Brinzolamide (catalog A4359); 
3-Bromopyruvic acid (catalog B7922); GNE-7915 (catalog B3605); 
KX2-391 (catalog B2282); PF-543 (catalog A3717); and Tipiracil 
(catalog A3875). The following chemical inhibitors were from Bio-
Techne Ltd: CHS 828 (catalog 6753); GSK 583 (catalog 6480); PF 
915275 (catalog 3291); SC 26196 (catalog 4189); SID 26681509 
(catalog 3625); SSM3 trifluoroacetate (catalog 5253), and Bafilo-
mycin A1 (catalog 1334). K6PC-5 (catalog SML1709) was from Sig-
ma-Aldrich. Both 3-Bromopyruvic acid and Tipiracil were recon-
stituted in water, and all other chemicals reconstituted in DMSO. 
Chemicals were sterilized by filtration through a 0.22 μM Durapore 
membrane (Merck Millipore).

Cell toxicity assay. CytoTox-Glo Cytotoxicity Assay (Promega) 
was performed on day 7 by measuring the activity of intracellular 
dead cell protease using a luminogenic peptide substrate AAF-Glo 
Substrate as per manufacturer’s instructions.

Monocyte isolation from human blood. Monocytes were isolated 
from human blood donors as per PBMC isolation described above. 
Thereafter, the PBMC pellets were resuspended in RPMI 1640 with 
ampicillin and l-glutamine, and separated using a hyperosmolar Per-
coll gradient. Monocytes were then used in the pH indicator assays, 
and infected with Mtb at MOI of 1.

Intracellular pH indicator assays. Fresh monocytes were stained 
with pHrodo iFL Green STP Ester amine reactive dye (Thermo Fish-
er Scientific) by making 10 mM stock solution with DMSO and then 
diluting with RPMI and 2 mM EDTA to give 10 μM at pH 7.4. After iso-
lation, monocytes were stained with pHrodo and incubated at 37°C for 
30 minutes, before washing with RPMI and 2 mM EDTA and resus-
pending in RPMI 1640 with 10% human AB serum, ampicillin, and 
l-glutamine. Monocytes were transferred to a 96-well plate for over-
night incubation at 37°C. Mtb infection and addition of compounds 
occurred in quick succession, and fluorescence readings were taken 
every 5 minutes for 40 minutes using GloMax Discover (Promega). A 
second intracellular pH assay, LysoSensor Green DND-189 (Thermo 
Fisher Scientific) was used with frozen monocytes. Monocytes were 
thawed and transferred to a 96-well plate for incubation at 37°C for 2 
hours, then infected with Mtb for a further 1 hour at 37°C before the 
addition of compounds and 2 μM LysoSensor in quick succession. 
Fluorescence readings were taken every 5 minutes for 40 minutes 
using GloMax Discover (Promega). Quadruplicate conditions and a 
minimum of 3 separate donors were used for each pH assay.

Immunohistochemistry of FFPE tissue. Immunohistochemical 
staining of FFPE lung tissue from TB and control patients was 
performed using 4 μm sections, using a previously optimized anti-
SphK1 antibody (ab61148, abcam), and the avidin-biotin-peroxi-
dase technique.
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