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BACKGROUND. Patients with p16+ oropharyngeal squamous cell carcinoma (OPSCC) are potentially cured with definitive 
treatment. However, there are currently no reliable biomarkers of treatment failure for p16+ OPSCC. Pathologist-based visual 
assessment of tumor cell multinucleation (MN) has been shown to be independently prognostic of disease-free survival (DFS) 
in p16+ OPSCC. However, its quantification is time intensive, subjective, and at risk of interobserver variability.

METHODS. We present a deep-learning–based metric, the multinucleation index (MuNI), for prognostication in p16+ OPSCC. 
This approach quantifies tumor MN from digitally scanned H&E-stained slides. Representative H&E-stained whole-slide 
images from 1094 patients with previously untreated p16+ OPSCC were acquired from 6 institutions for optimization and 
validation of the MuNI.

RESULTS. The MuNI was prognostic for DFS, overall survival (OS), or distant metastasis–free survival (DMFS) in p16+ OPSCC, 
with HRs of 1.78 (95% CI: 1.37–2.30), 1.94 (1.44–2.60), and 1.88 (1.43–2.47), respectively, independent of age, smoking status, 
treatment type, or tumor and lymph node (T/N) categories in multivariable analyses. The MuNI was also prognostic for DFS, 
OS, and DMFS in patients with stage I and stage III OPSCC, separately.

CONCLUSION. MuNI holds promise as a low-cost, tissue-nondestructive, H&E stain–based digital biomarker test for 
counseling, treatment, and surveillance of patients with p16+ OPSCC. These data support further confirmation of the MuNI in 
prospective trials.
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validation cohorts and very small sam-
ple sizes. In addition, these strategies 
rely on tissue-destructive sampling or 
require expensive methods for gene 
expression profiling. To date, howev-
er, no single signature has been vali-
dated as a practical predictor of DFS, 
OS, or distant metastasis–free survival 
(DMFS) in multiple cohorts, a critical 
step toward translating the signature 
into a clinical test. Reliable and sensi-
tive prognostic tools for p16+ OPSCC 
could support clinical decision mak-
ing. For instance, in high-risk patients, 
a safe de-escalation of treatment may 
not be possible, whereas, converse-
ly, very low-risk patients could bene-
fit from de-escalation and thus avoid 

adverse effects related to unnecessary intensive therapy (5).
Traditionally, tissue morphology and architecture within the 

tumor microenvironment (TME) have been shown to be reflective 
of tumor characteristics and to carry rich prognostic and predic-
tive information across myriad histologic types (15–17). For head 
and neck squamous cell carcinoma (HNSCC), Hartman et al. 
reported that high numbers of tumor-infiltrating CD8+ T cells in 
the TME are associated with oropharyngeal localization and lim-
ited tumor growth and that the patients with high infiltration of 
CD8+ T cells also have significantly better outcomes (18). Lewis 
et al. previously visually identified anaplasia and multinucleation 
(MN) in the TME as novel prognostic and independently associ-
ated features in patients with p16+ OPSCC (Figure 1 and ref. 19). 
However, the recognition and quantification of morphologic fea-
tures is time intensive and requires human interpretation, leading 
to interobserver variability and bias.

In this work, we present a computerized metric called the 
multinucleation index (MuNI), a quantification of MN density in 
epithelial (EP) regions, to risk-stratify patients with p16+ OPSCC 
for DFS, OS, and DMFS. Two machine-learning networks, specif-
ically, conditional generative adversarial networks (cGANs) (20), 
were used for the MuNI calculations: (a) GANMN to segment MN 
events and (b) GANEP to segment cancer nuclei in EP regions in 
digitized H&E-stained whole-slide images (WSIs). By calculating 
the ratio of the MN events to the total number of EP nuclei identi-
fied on the slide image, we calculated a MuNI for every slide and 
every patient with p16+ OPSCC (Figure 2). A large cohort of 1094 
previously untreated patients with p16+ OPSCC obtained from 
6 institutions was used to validate the prognostic ability of the 
MuNI. We performed univariate and multivariable analyses using 
DFS, OS, and DMFS as the clinical endpoints. The prognostic abil-
ity of the MuNI to predict the same endpoints was also evaluated 
within the individual stage I, II, and III groups, as defined by the 
AJCC’s 8th edition.

Results
Patient demographics. Details on patient demographics for all 
cohorts from the individual sites are provided in Supplemental 
Table 1 (supplemental material available online with this article; 

Introduction
The continued increase in the incidence of oropharyngeal squa-
mous cell carcinoma (OPSCC) in the setting of declining rates of 
tobacco use has been attributed to HPV, with almost 70% of all 
OPSCCs being HPV+ (1–3). HPV-related OPSCC has now overtak-
en cervical cancer as the most common HPV-related malignan-
cy in the US (1, 2). HPV positivity has been well demonstrated to 
confer favorable survival for patients with OPSCC (4, 5). This has 
led to separate tumor, node, metastasis (TNM) staging systems 
for HPV-related (p16+) and HPV-unrelated OPSCC patients in the 
new 8th edition of the American Joint Commission on Cancer/
Union for International Cancer Control (AJCC/UICC) guidelines 
(3), with p16 IHC currently recognized as a suitable surrogate 
marker for HPV in these patients (4–6).

Clinically, tumor and lymph node (T/N) status along with 
smoking have previously been shown to influence the risk of 
recurrence and/or death for patients with p16+ OPSCC (4, 5). How-
ever, these clinical parameters fail to capture intrinsic biological 
characteristics of p16+ OPSCC that may be relevant to treatment 
sensitivity and thus a clinical response. Machczynski et al. nice-
ly discuss the limitations of even the new 8th edition of the AJCC 
guidelines regarding staging for p16+ OPSCC (7). Wuerdemann et 
al. found that the 8th edition’s staging system did not discriminate 
well between patients with HPV+ stage II OPSCC and those with 
HPV+ stage III OPSCC (8). Similarly, no significant differences in 
OS have been found between the 8th edition’s guidelines for (9) 
stage I versus stage II and (10) stage II versus stage III OPSCC.

Currently, the biomarker landscape for HPV-related OPSCC 
has largely focused on finding single- or multigene prognostic 
signatures. Verma et al. showed that the lack of STAT3 expression 
along with the increased expression of AP1 and NF-κB were asso-
ciated with a better prognosis in p16+ OPSCC (11). Similarly, Baler-
mpas et al. demonstrated that the presence of CD8+ and FOXP3+ T 
cells was prognostic of overall survival (OS) and disease-free sur-
vival (DFS) in p16+ OPSCC (n = 130; ref. 12). Consequently, some 
investigators have used genomic, epigenetic, and gene expression 
data to generate complex signatures of aggressive p16+ OPSCC 
biology (6, 13, 14). Unfortunately, the potential for clinical adop-
tion of these studies is limited because of the lack of independent 

Figure 1. Example of tumor cell MN. (A) Typical nonkeratinizing SSC, for comparison, which has fusiform, 
high nuclear/cytoplasmic ratios with inconspicuous nucleoli and brisk mitotic activity. The nuclei are 
relatively consistent in size across the whole tumor (original magnification, ×20). (B) Tumor with an area of 
MN, in which cells have 3 or more nuclei (original magnification, ×40).
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0.001), and DMFS (HR: 1.88, 95% CI: 1.43–2.47, P < 0.001) (Table 
2). Visual examples of 3 high-risk and low-risk samples identified 
by MuNI are shown in Supplemental Figure 10.

Experiment 2: association between the MuNI and OS, DFS, and 
DMFS in the AJCC 8th edition’s defined stage groups. The prognostic 
ability of the MuNI was evaluated for patients within the AJCC 8th 
edition’s defined stage groups. On univariate and multivariable 
analyses, we found that the MuNI was prognostic for DFS, OS, and 
DMFS for the SVA patients with stage I and stage III tumors, respec-
tively. The HRs for predicting DFS, OS, and DMFS on univariate 
analysis were 1.93 (95% CI: 1.32–2.82, P < 0.001), 1.76 (95% CI: 
1.13–2.74, P < 0.01), and 1.88 (CI: 1.26–2.83, P < 0.02), respective-
ly, for stage I tumors, and 2.29 (CI: 1.47–3.56, P <0.001), 2.31 (CI: 
1.42–3.77, P < 0.02), and 2.11 (CI: 1.33–3.35, P < 0.01), respectively, 
for stage III tumors. For the patients with stage II tumors, the HRs 
for predicting DFS, OS, and DMFS on univariate analysis were 
1.23 (CI: 0.81–1.87, P < 0.33), 1.59 (CI: 0.99–2.57, P < 0.06), and 1.3 
(CI: 0.82–2.04, P < 0.26), respectively (Figures 3–5). The HRs for 
predicting DFS, OS, and DMFS on multivariable (Cox) regression, 
controlling for age, sex, race, smoking status, and T/N stages were 
1.82 (95% CI: 1.38–2.32, P < 0.001), 1.94 (CI: 1.44–2.61, P <0.001), 
and 1.89 (CI: 1.44–2.50, P < 0.001), where the patients were strati-
fied by overall tumor stage.

Experiment 3: an integrated classifier comprising the MuNI and 
clinical variables for predicting OS. A Cox regression model via Las-

https://doi.org/10.1172/JCI145488DS1). Patients were followed 
for a mean and median of 63 and 59 months, respectively (range, 
1–200 months). Briefly, the median age for the entire set was 58 
years; 66% of patients were current or former smokers; and 93.4% 
of patients were White. The Non-White races consisted of Black 
(5.3%) and Asian (0.4%). Supplemental Table 1 provides statistical 
differences in the clinical variables and MuNI across the cohorts.

Experiment 1: association between the MuNI and OS, DFS, and 
DMFS in all patients. Table 1 provides the results of the univari-
ate analysis for the major clinical and pathologic features and for 
the computerized detection of MN in different cohorts. Kaplan- 
Meier (KM) survival curves for MuNIs in the training and valida-
tion cohorts are presented in Figures 3, 4, and 5. Cohort-specific 
KM curves are provided in the supplemental material (Supplemen-
tal Figures 5–7). In the training set (STR) cohort, the HRs for OS and 
DFS were 2.09 (95% CI: 1.08–4.04, P < 0.03) and 1.50 (95% CI: 
0.82–2.74, P < 0.19), respectively. In the validation set (SVA) cohort, 
we found that the MuNI was prognostic, showing that the patients 
with a high MuNI had significantly worse OS, DFS, and DMFS. 
The HRs in SVA were 1.92 (95% CI: 1.47–2.79, P < 0.001), 1.79 (95% 
CI: 1.42–2.26, P < 0.001), and 1.82 (95% CI: 1.42–2.33, P < 0.001) 
for OS, DFS, and DMFS, respectively. On multivariable analysis in 
the entire SVA cohort, controlling for relevant clinical parameters, 
the MuNI was independently prognostic of OS (HR: 1.94, 95% 
CI: 1.44–2.60, P < 0.001), DFS (HR: 1.78, 95% CI: 1.37–2.30, P < 

Figure 2. Overall flowchart of the image analysis pipeline. The training step involved building MN and EP segregators. The same deep-learning architec-
ture, cGAN, was used to build the segregators. Each block in the cGAN models consisted of convolution, BatchNorm, and ReLU layers. The MuNI calcula-
tion phase started with the extraction of tiles from tissue regions. The tiles were then input into the MN and EP models separately. Finally, the MuNI was 
calculated automatically, which was the ratio of MNs within EP regions to EP cells.
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stantial toxicity and morbidity from these therapies. Consequent-
ly, there is a clear need to develop a quantifiable and reproducible 
biomarker to stratify high- and low-risk patients with p16+ OPSCC 
(23). Low-risk patients might then potentially benefit from thera-
py de-intensification, whereas high-risk patients would continue 
standard or intensified management.

Lewis et al. previously identified anaplasia and MN as novel 
prognostic features in patients with p16+ OPSCC (19). These were 
strongly and independently associated with disease recurrence and 
death from the disease and also correlated with DFS in a cohort of 
surgically treated patients with OPSCC (n = 149). However, identifi-
cation of the above-mentioned morphologic features is pathologist 
dependent, and, although no specific study in the literature docu-
ments it, implies subjectivity and potential bias (24). We found spe-
cific examples difficult to discern and quantify, such as overlapping 
nuclei from separate cells that were not truly multinucleated and 
large, anaplastic, irregular nuclei that were also not truly multinu-
cleated. Additionally, the study was performed at a single institution 
in a cohort of only surgically treated patients, for whom all slides of 
resected tumor, including lymph node metastases, were reviewed. 
Interestingly, in this study, the pathologist’s quantification of MNs 
on the single H&E-stained slides for 478 patients with p16+ OPSCC 
was not found to be prognostic for the other institutions’ cohorts 
(Supplemental Method 3), probably because of undersampling of 
the phenomenon on just a representative tumor slide.

The computerized MuNI presented in this work focused on 
addressing the issues related to tumor sampling and to subjectivity 
and inter-reader variability in MN interpretation. More critically, 
though, the MuNI is an independent prognostic marker of major 
clinical outcomes, OS, DFS, and DMFS. We validated the MuNI 
in a set of 1094 patients from 6 different institutions and found it 
to be strongly associated with DFS, OS, and DMFS. We identified 
a strong association between the predictions of the MuNI and OS, 

so was trained on STR using age, sex, smoking status, TNM stage, 
and the MuNI to predict OS. We calculated the risk score for each 
patient for risk stratification. The median of the risk scores in the 
STR group was defined as the cutoff to dichotomize low- and high-
risk patients, and the same cutoff was used in the SVA group. The 
HR value for predicting OS on univariate analysis was 2.42 (95% 
CI: 1.86–3.15, P < 0.001) for SVA (Figure 5). We conducted the same 
experiments using the clinical variables only, without the MuNI, 
and the corresponding HR was 1.43 (CI: 1.09–1.87, P < 0.01).

Experiment 4: evaluating the resilience of the MuNI against batch 
effects to account for site-specific preanalytic variations. We performed 
qualitative analysis of the MuNI resilience against batch effects. 
As a baseline, for each WSI coming from any of the 6 sites, image 
metrics related to image brightness and contrast were calculated 
using HistoQC. The features were then embedded into 2D space 
for visualization using the t-distributed stochastic neighbor embed-
ding (t-SNE) algorithm (Figure 6A). Likewise, we performed t-SNE 
mapping to calculate MuNI-specific statistics (Figure 6, B and C). 
We assessed a total of 8 different statistics (MuNI of the entire WSI, 
mean, median, SD, minimum, maximum, and 33rd–66th percen-
tiles) for the MuNI from across every tile of the WSI.

Discussion
Given the improved treatment response of patients with p16+ 
OPSCC, concerted efforts have been directed toward developing 
precision oncology approaches that include targeted de-intensi-
fication of radiation and chemotherapy doses and regimens (21, 
22). However, the unpredictable clinical behavior of p16+ OPSCC 
results in a significant risk that some patients will be over- or 
undertreated. The majority of patients with p16+ OPSCC are cured 
with current treatments, which include primary radiation, primary 
chemoradiation, or primary surgery with or without adjuvant radi-
ation or chemoradiation. However, these patients experience sub-

Table 1. HRs and P values from univariate Cox proportional hazards model analysis of DFS across 6 institutions

Univariate Cox proportional hazards model analysis
Validation cohort (SVA) D2 D3 D4 D5 D6

Variable HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P
Age  
(≤56 vs. >56 yr)

1.41
(1.11–1.78)

0.01 1.87
(0.77–4.54)

0.17 0.90
(0.46–1.75)

0.76 0.90
(0.54–1.49)

0.67 1.21
(0.80–1.83)

0.37 2.04
(1.25–3.33)

0.01

Sex 1.48
(0.99–2.21)

0.06 1.77
(0.55–5.67)

0.44 1.00
(0.30–3.26)

0.99 0.36
(0.03–4.61)

0.43 1.15
(0.6–2.21)

0.69 1.94
(0.81–4.62)

0.26

Race (White vs.  
Black or Asian)

0.83
(0.45–1.52)

0.58 4.3
(0.26–71.7)

0.03 2.16
(0.41–11.4)

0.19 0.48
(0.18–2.20)

0.42 0.57
(0.23–1.38)

0.33 0.52
(0.12–2.18)

0.50

Smoking status  
(0 vs. 1)

1.31
(1.03–1.67)

0.04 1.99
(0.85–4.68)

0.16 1.36
(0.68–2.7)

0.39 1.08
(0.57–2.02)

0.81 1.44
(0.93–2.23)

0.13 0.89
(0.54–1.46)

0.64

Overall stage (stage I/II 
vs. state III)

1.79
(1.32–2.43)

< 0.001 1.88
(0.66–5.33)

0.16 1.88
(0.82–4.32)

0.08 1.35
(0.79–2.32)

0.22 1.56
(0.98–2.49)

0.04 2.44
(0.77–7.66)

0.02

T stage  
(T1/2 vs. T3/4)

1.87
(1.45–2.43)

< 0.001 1.57
(0.66–3.76)

0.28 2.15
(1.05–4.41)

0.02 1.04
(0.64–1.67)

0.88 1.92
(1.25–2.95)

0.01 2.37
(1.13–5)

0.01

N stage  
(N0/1 vs. N2/3)

1.72
(1.34–2.2)

< 0.001 1.3
(0.53–3.21)

0.54 2.73
(1.25–5.96)

0.01 0.97
(0.52–1.63)

0.76 1.15
(0.75–1.77)

0.50 1.61
(0.87–2.98)

0.08

MuNI  
(high vs. low)

1.79
(1.42–2.26)

< 0.001 2.64
(1.15–6.04)

0.05 2.15
(1.07–4.3)

0.06 1.45
(0.89–2.34)

0.14 1.53
(1.00–2.35)

0.04 1.96
(1.2–3.21)

0.01

HRs and P values from univariate Cox proportional hazards model analysis of DFS across 6 institutions. Bolded values indicate significant HR or P values. 
Data for the other races are in Supplemental Table 1.

https://www.jci.org
https://doi.org/10.1172/JCI145488


The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

5J Clin Invest. 2021;131(8):e145488  https://doi.org/10.1172/JCI145488

to exclude those who might have a high chance of treatment fail-
ure resulting in recurrence (25). Although multiple clinical trials 
are currently exploring therapeutic de-intensification strategies, 
they are limited by a dependence on clinical parameters to iden-
tify appropriate patients at low risk of disease recurrence (12). The 
identification of biologically meaningful markers of a good prog-

DFS, as well as DMFS among the AJCC 8th edition’s defined stage 
I and stage III patients in both univariate and multivariable anal-
yses. If confirmed in a prospective clinical trial setting, we believe 
this finding could have major implications for clinical practice. 
Patients with stage I disease, currently the target of de-escalation 
treatment strategies, could be further stratified using the MuNI 

Figure 3. KM DMFS curves. KM DMFS curves for all patients in the training/validation cohorts and groups of patients at different cancer stages in the 
validation cohort according to the AJCC 8th edition’s definition.

Figure 4. KM DFS curves. KM DFS curves for all patients in the training/validation cohorts and groups of patients at different cancer stages in the valida-
tion cohort according to the AJCC 8th edition’s definition.

https://www.jci.org
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nosis is of critical importance. Similarly, patients with stage III 
disease who are further categorized as high risk by the MuNI may 
merit the maintenance of treatment intensity by incorporating 
surgical resection, consistently utilizing concurrent chemothera-
py, or intensifying chemoradiotherapy. Taken together, this would 
represent a novel, viable precision oncology approach to treating 
patients with p16+ OPSCC in the modern era.

In spite of the differences in clinical and pathological data 
between the sites (Supplemental Table 1), the MuNI was prognostic 
across the different sites using a single threshold cutoff learned from 
a single site, although with modest HRs for death. In Figure 6, the 
t-SNE of low-level image features such as color and texture extracted 
via HistoQC shows that each site clustered separately, indicating a 
large batch effect. On the other hand, the t-SNE using MuNI-specific 
statistics showed that slides from different sites were interspersed 
with one another, reflecting the resilience of the MuNI against 
site-specific preanalytic variations and batch effects. Additionally, as 
illustrated in Figure 6C, the MuNI was also able to enrich for patients 
who would develop tumor progression (progressors) versus those 
who would not (nonprogressors). MuNIs for the progressor group 
were also found to be statistically and significantly larger than those 
for the nonprogressor group (Supplemental Figure 8).

Quantitative histomorphometric (QH) approaches for the 
prognostication of disease outcomes have been previously pro-
posed for many cancers. These approaches fall into 2 major cat-
egories: hand-crafted (or domain-inspired) and deep-learning– or 
neural network–based approaches. We have previously introduced 
2 hand-crafted–based approaches, OHbIC (26) and QuHbIC (27), 
to stratify the risk of patients with head and neck carcinomas using 
H&E-stained tumor microarrays (TMAs). The first study showed 
the independent prognostic value of OHbIC, which utilizes nucle-
ar shape and texture features for predicting disease-specific sur-
vival, in a cohort (n = 115) of patients with oral cavity squamous cell 
carcinoma (SCC). The latter showed that QuHbIC could predict 
the risk of recurrence in a cohort (n = 160) of patients with p16+ 
OPSCC by quantizing the spatial distribution of cell clusters. A 
second class of approaches of neural network–based deep-learn-
ing classifiers have become popular for cancer detection (28), 
diagnosis (29, 30), and prognosis (31). Bulten et al. presented a 
grading system for prostate biopsies using deep-learning models 
and evaluated its performance in a set of 550 biopsies (29). Skrede 
et al. trained multiple deep-learning models at different magnifi-
cations and fused their output to predict the prognosis for colorec-
tal cancer (n = 2042) (31). These approaches utilize deep networks 

Figure 5. KM OS curves. KM OS curves for all patients in the training/validation cohorts and groups of patients at different cancer stages in the validation 
cohort according to the AJCC 8th edition’s definition. The last row presents KM OS curves for all patients in the validation cohort using an integrated classi-
fier comprising clinical variables for predicting OS.
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to learn best representations for predicting prognosis categories of 
interest without requiring a pathologist’s input. However, because 
of the multilayered, nonlinear structure of deep-learning models, 
they are considered black boxes, and their output is not inter-
pretable by pathologists or translatable into any directly visual 
form. Interestingly, unlike these models, the method presented 
here utilizes the power of deep learning with the interpretability 
of hand-crafted (i.e., visually identified) features. In other words, 
deep learning was used not to make a direct prognostic prediction 
but rather to quantify MNs in WSIs and derive a prognostic metric 
based on the number of MNs identified on the WSIs. As demon-
strated in experiment 4, the hybrid approach to identify a com-
putational pathology–based biomarker was found to be resilient 
against batch effects.

Our study has some limitations. The cohorts from different 
institutions were found to have significant differences in their 
MuNIs, as well as in certain clinical and pathologic parameters 
(Supplemental Table 1 and Supplemental Figure 9). Nonethe-
less, we found that the MuNI was prognostic for the entire set of 
validation cohorts in both univariate and multivariable analyses, 
although it was not consistently prognostic for each of the separate 
cohorts. A possible explanation could be related to MN segmen-
tation performance resulting in variants in the generated MuNIs 
across the different cohorts. Further evaluation of the sensitivity 
of the MuNI segmentation across sites is necessary. The MuNI 
was most strongly prognostic of outcomes in patients with stage 
III disease. This could be related to the number of patients with-
in each stage. Since stage I and II patients had much better sur-
vival outcomes, irrespective of MN, it was more challenging to 
identify a difference between the high- and low-risk patients in 
these groups. A modest difference between the high- and low-risk 
groups could be observed among patients with stage I disease, 

since there were 471 patients, whereas in the group with stage 
II disease, which included 245 patients, that difference was not 
apparent. In the group of patients with stage III disease, whose 
overall prognosis was much worse, we could detect the difference, 
even though there were only 169 patients. Finally, this study was 
based on retrospectively collected data. Analyses of slides from 
completed multi-institutional, prospective clinical trials, or better 
yet, a prospective clinical trial with the MuNI embedded within it, 
are required to validate the findings, minimize the potential for 
bias, and determine whether the MuNI can specifically predict a 
patient’s response to treatment.

In conclusion, the MuNI is a tissue-nondestructive, repro-
ducible, rapid, and cost-efficient artificial intelligence–enabled 
(AI-enabled) biomarker with the potential to risk-stratify patients 
with p16+ OPSCC. The MuNI only relies on the quantitative mea-
surement of MN tumor cells in digitized H&E-stained tissue from 
primary tumors, without the need for visual or manual segmen-
tation of tumor versus nontumor regions. These specimens are 
already consistently obtained from patients with OPSCC in rou-
tine practice. This makes the MuNI potentially widely introduc-
ible into clinical practice at US institutions and useful in low- and 
middle-income countries, where the costs associated with genom-
ics-based tests make them difficult to adopt and implement. Given 
that the MuNI is tissue nondestructive, further validation in ret-
rospective clinical trials or prospective validation could make it a 
useful biomarker to guide the treatment of p16+ OPSCC.

Methods

Patient selection
H&E-stained slides from oropharyngeal primary tumors were 
reviewed by pathologists at the respective institutions to confirm the 

Table 2. HRs and P values from multivariable Cox proportional hazards model analysis of DFS across 6 institutions

Multivariable Cox proportional hazards model analysis controlling for other variables
Validation cohort, SVA D2 D3 D4 D5 D6

Variable HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P
Age 1.04  

(1.03–1.06)
< 0.001 1.10  

(1.04–1.16)
< 0.001 1.01  

(0.97–1.06
0.68 1.03  

(1.00–1.06)
0.07 1.03  

(1.01–1.06)
0.02 1.07  

(1.03–1.10)
< 0.001

Sex 1.45  
(0.88–2.40)

0.14 1.92  
(0.40–9.31)

0.42 0.54  
(0.12–2.32)

0.40 (0.00 – inf.) 1.00 1.27  
(0.61–2.64)

0.52 1.32  
(0.39–4.46)

0.66

Race (White vs.  
Black or Asian)

0.92  
(0.58–1.45)

0.71 0.37  
(0.07–1.82)

0.22 0.98
(0.24–4.08)

0.98 0.67  
(0.34–1.30)

0.24 2.70  
(0.84–8.63)

0.10 0.62  
(0.08–4.83)

0.30

Smoking status  
(0 vs. 1)

1.32  
(0.99–1.78)

0.06 1.52  
(0.54–4.28)

0.43 1.41  
(0.66–3.04)

0.36 0.89  
(0.47–1.69)

0.72 1.18  
(0.72–1.95)

0.51 1.10  
(0.60–2.00)

0.78

Overall stage 0.92  
(0.67–1.25)

0.58 0.75  
(0.24–2.42)

0.64 0.80  
(0.33–1.90)

0.61 1.32  
(0.65–2.39)

0.52 0.78  
(0.44–1.37)

0.38 0.80  
(0.40–1.65)

0.56

T stage 1.33  
(1.08–1.64)

0.01 1.51  
(0.68–3.38)

0.31 1.41  
(0.76–2.64)

0.28 0.88  
(0.62–1.32)

0.59 1.59  
(1.07–2.36)

0.02 1.77  
(1.07–2.94)

0.03

N stage 1.28  
(1.03–1.58)

0.02 0.94  
(0.44–1.97)

0.86 1.70  
(0.93–3.09)

0.08 1.00  
(0.68–1.46)

0.98 1.14  
(0.78–1.65)

0.50 1.52  
(0.92–2.53)

0.10

MuNI (low vs. high) 1.78  
(1.37–2.30)

< 0.001 2.22  
(0.76–6.51)

0.15 2.15  
(0.92–5.03)

0.08 1.46  
(0.86–2.49)

0.16 1.45  
(0.95–2.21)

0.08 1.90  
(0.95–3.79)

0.07

HRs and P values from multivariable Cox proportional hazards model analysis of DFS across 6 institutions. Bolded values indicate significant HR or P 
values. Data for the other races are in Supplemental Table 1. inf., infinitive. 
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sent to Case Western Reserve University, where they underwent WSI 
scanning at ×40 resolution (0.25 μm/pixel resolution) using a Ven-
tana iScan HT slide scanner. WSI quality checking was performed 
using HistoQC (33), an automatic, rapid, and quantifiable quality 
control tool for computational pathology that excluded an additional 
61 patients’ specimens because of poor image quality. Finally, 1094 
specimens remained for the analysis. The patients were divided into 
training and validation sets, STR and SVA, respectively. D1 comprised 
STR (n = 171), which was used to build the segmentation models and to 
define the cutoff threshold for risk stratification. SVA (n = 923) was used 
for independent validation of the prognostic ability of the MuNI (D2 = 
106, D3 = 121, D4 = 97, D5 = 322, D6 = 277).

Tissue morphology analysis
The first step in calculating the MuNI was to automatically seg-
ment the WSI into EP and stromal regions, since MN is normalized 
by the total number of cancer cells identified within the EP. The 
segmentation was performed by means of a cGAN (20). The EP 
segmentation model (GANEP) was built and evaluated using a set 

diagnosis of OPSCC. Immunochemistry for p16 had been performed 
at the respective institutions in routine clinical practice, and only those 
tumor specimens that were classified as p16+ by nationally accepted 
pathologic standards (extensive nuclear and cytoplasmic staining 
present in 70% or more of the tumor specimen with at least moderate 
to strong intensity) were included (32). H&E-stained glass slides from 
the primary tumors of each patient were re-reviewed by the collabo-
rating pathologists for the selection of the most representative tumor 
slide. If the patient was treated with primary surgery, this slide was 
from the resection specimen or, if treated with primary (chemo)radia-
tion, then the best representative biopsy slides were selected.

Data set preparation
Data on a total of 1485 patients with OPSCC were collected from the 
6 institutions. For simplicity, each institution was labeled Di, where 
i corresponds to the index of the site of origin. After reviewing the 
clinical data and p16 status, 391 of the patients were excluded from 
the study, 330 of whom were excluded because of their negative or 
equivocal p16 status or missing follow-up data (Figure 7). Slides were 

Figure 6. Patients in the entire set were embedded into 2D feature space and then plotted using t-SNE. The x and y axes refer to t-SNE dimensions 1 and 
2, respectively. Embedment was performed using (A) low-level image features such as color and texture extracted via HistoQC and (B) the MuNI and (C) 
MuNI-derived metrics. Each dot represents a patient, and the dots are colored according to (A and B) the site they originated from or (C) their progressor or 
nonprogressor label. (A) Each site clusters separately because of the differences in patient demographics between the sites. Despite the differences, (B) no 
site was clustered away from the others, indicating that the MuNI-derived metrics were reproducible across sites. (C) Separation between progressor and 
nonprogressor patients using the MuNI metrics.
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to identify and eliminate false-positive MN exemplars, given that MNs 
are typically larger compared with EP cells and lymphocytes. A detailed 
description of the network architecture and validation of GANMN is pro-
vided in the supplemental material (Supplemental Method 1).

MuNI
Utilizing GANEP and GANMN, EP and MN masks were extracted for 
each WSI. For a WSI, m was used to denote the number of tiles extract-
ed from the WSI and  and  corresponded to the number of 
detected MNs and EP cells in tile i extracted from the WSI, respective-
ly. The normalized MuNI for the WSI was then defined as the ratio of 
total MNs to EP cells.

   Equation 1

Additionally, different variants of the MuNI were also analyzed 
in terms of their prognostic ability. Further details are provided in the 
supplemental material (Supplemental Method 2).

Learning cutoff for the MuNI for the stratification of patients with 
high- or low-risk p16+ OPSCC. The MuNI is a continuous variable, neces-
sitating a cutoff to stratify patients into low- and high-risk categories. A 
cutoff was determined as the mean value of MuNIs within the model-
ing set STR and then applied to SVA to obtain dichotomized MuNIs.

of 6 cases from STR. A total of 153 image patches, each correspond-
ing to 512 × 512 pixels, were cropped at ×10 magnification and then 
annotated by a pathologist. Of these, 102 were used for training 
GANEP. Its performance was then evaluated quantitatively on the 
remaining 51 images and yielded a pixel-level F1 score of 0.88.

Automated detection and segmentation of MN
MNs were segmented using another cGAN model (GANMN) that 
involved 2 steps. Training of the GANMN for nuclei segmentation 
was done using 30 images from a public data set corresponding to 
multiple organs (34). Patches of 256 × 256 pixels were extracted 
from these images at ×40 magnification and fed into the model 
during training. Segmentation performance was quantitatively 
and qualitatively verified to be suitable for MN segmentation. For 
independent validation of GANMN, another publicly available data 
set corresponding to patients with triple-negative breast cancer 
was used (35). The pixel-level F1 score of GANMN was 0.93 for this 
public data set.

In the second phase, GANMN was trained to detect any cells, inde-
pendent of the cell type, and was subsequently fine-tuned for the differ-
entiation of MNs from other cell types such as EP cells and lymphocytes. 
MNs were annotated by a collaborating pathologist using 12 WSIs from 
STR, which resulted in 1002 annotations. Nine WSIs with a total of 668 
MNs were used for model training and the remaining 334 MNs for valida-
tion. The MN segmentation model yielded a pixel-level F1 score of 0.76 
for the validation images. An empirically defined size threshold was used 

Figure 7. Inclusion and exclusion criteria for the study. Data on a total of 1485 patients with OPSCC were gathered from the 6 institutions. After reviewing 
the clinical data and WSI image quality, 391 of the patients were excluded. A total of 1094 specimens remained for the analysis. SCPMG, Southern Cali-
fornia Permanente Medical Group; WUSTL, Washington University in St. Louis; JHU, Johns Hopkins University; MEDVAMC, Michael E. DeBakey VA Medical 
Center; CCF, Cleveland Clinic Foundation; VUMC, Vanderbilt University Medical Center.
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