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Introduction
Systemic lupus erythematosus (SLE) is an autoimmune syndrome 
of unclear etiology that predominantly affects women and dispro-
portionately afflicts minorities (1). Lupus derives its name from 
the Latin word for wolf, and early descriptions of this disease used 
the term to describe the facial lesions that look like a wolf ’s bite. 
SLE has pleiotropic clinical manifestations and profound clinical 
heterogeneity, making its diagnosis and treatment very challeng-
ing. Indeed, what we call SLE may be driven by heterogeneous 
pathways of immune dysregulation that eventually converge into 
a loosely shared clinical phenotype. SLE affects many organ sys-
tems, including skin, kidneys, brain, and the vasculature. Char-
acteristically, SLE presents with periods of clinical and serologic 
flare interspersed among phases of clinical remission, which can 
occur spontaneously or modulated by exposure to environmen-
tal stimuli, such as ultraviolet light or infections. Recent advanc-
es in immunomodulatory/immunosuppressive treatments have 
improved morbidity and mortality in SLE. However, as patients 
live longer, prolonged inflammation and exposure to enhanced 
oxidative stress promote the development of chronic complica-
tions, including increased incidence of premature cardiovascu-
lar disease (CVD) (2). Furthermore, the ability to predict which 
patients will respond to specific medications or develop end-organ 
complications remains an area of need to optimize SLE outcomes.

SLE develops in a multistep process in which genetic, epigen-
etic, and environmental factors can promote aberrant cell death 
and ineffective clearance of dead cell debris (3). In genetically 

predisposed hosts, this imbalance in dead cell handling can con-
tribute to modification and externalization of nucleic acids and 
other autoantigens, to promotion of innate and adaptive immune 
dysregulation, to the development of autoantibodies that predom-
inantly recognize nucleic acids and/or proteins binding to nucle-
ic acids, and to the formation of immune complexes (ICs) that 
deposit in various organs and promote damage (3). Autoantibody 
formation can precede clinical disease by many years, suggesting 
that immune dysregulation is an early event in disease pathogene-
sis (4). Notably, aspects of immune dysregulation characteristic of 
SLE have been described in unaffected relatives (5), further sup-
porting a role for both genetic and environmental factors in sus-
ceptibility to autoimmunity.

The innate and adaptive arms of the immune system are 
altered and almost every immune cell type becomes dysregulated 
in SLE and its various murine models (3, 6). The role of the adap-
tive immune system in SLE has been thoroughly studied and can-
not be overemphasized, and various current therapeutic strategies 
target these immune responses (7). In contrast, the role of various 
components of the innate immune system in SLE pathogenesis is 
less well characterized, but recent work emphasizes their crucial 
role in initiating and perpetuating autoimmunity in this disease. 
Abnormalities in phenotype and function of monocytes, mac-
rophages (8, 9), myeloid and plasmacytoid DCs (10, 11), baso-
phils (12), neutrophils (13), NK cells, and γδ T cells (6) have been 
described in SLE. Furthermore, dysregulation of fundamental 
innate immune strategies, such as the complement pathway, syn-
thesis of and response to IFNs, and mechanisms of neural regula-
tion of immune responses, contributes to autoimmunity and tis-
sue damage in SLE (3, 14–16). In addition, genetic variations that 
alter various components of innate immune responses have been 
reported to contribute to the risk and/or severity of SLE (Table 1).

This Review focuses on the putative roles that the crosstalk 
between aberrant cell death (particularly the formation of neutro-
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as discussed below, play prominent roles in SLE pathogenesis (30, 
31). In particular, dysregulation in neutrophil cell death and the 
role of NETs in SLE, as discussed later, display high immunogenic 
and proinflammatory potential.

Neutrophils, NETs, and SLE pathogenesis
Neutrophil functions and plasticity. Over the past decade, neutro-
phils have reemerged as presumed culprits in various aspects of 
SLE pathogenesis (Figure 1 and ref. 13). As the first responders 
against invading microorganisms (32), neutrophils develop and ter-
minally differentiate in the bone marrow and are then released into 
the circulation, where they patrol and sense danger signals (32, 33). 
Under conditions of homeostasis, neutrophils are also found in the 
lung, spleen, and liver, and they follow tightly regulated circadian 
rhythms that allow for disarming strategies prior to their migration 
to various tissues (33, 34). Whether disruptions in neutrophils’ nor-
mal circadian rhythm modulate autoimmune responses remains to 
be determined. In addition to their antimicrobial roles, neutrophils 
are responsible for fundamental homeostatic functions, including 
roles in coagulation, angiogenesis, resolution of inflammation, and 
tissue repair (33, 35–39). Some of these neutrophil properties are 
induced and modulated by specific tissues, with profound neutro-
phil intertissue heterogeneity in the steady state (33). Under condi-
tions of injury or infection, neutrophils display their antimicrobial 
and proinflammatory strategies in tissues (33, 40), including the 
release of neutrophil-derived serine and matrix metalloproteinas-
es (MMPs) that cleave extracellular matrix components, thereby 
disrupting existing tissue architecture (41). Neutrophils use a com-
plex armamentarium of strategies to immobilize and kill microbes, 
including phagocytosis and bacterial degradation through synthe-
sis of ROS; release of antimicrobial peptides from granules; and the 
synthesis of NETs, which are lattices of chromatin bound to gran-
ule peptides that have the ability to immobilize and potentially kill 
various microorganisms (42–44).

phil extracellular traps), dysregulation of neutrophils, and the IFN 
pathway plays in the pathogenesis of SLE and its associated compli-
cations, in the context of current and potential therapeutic targets.

SLE and the aberrant handling of cell death
Dysregulation in cell death pathways, defective clearance of dying 
cells and their products, and aberrant response to this cell debris by 
various immune cell subsets are considered fundamental aspects 
of SLE pathogenesis (Figure 1). This process has been recently 
reviewed in detail (17). Cell death is associated with modifica-
tion and redistribution to the cell surface and extracellular space 
of many ubiquitously expressed autoantigens, which may affect 
immunologic self-tolerance. Dysregulation in many forms of cell 
death, including apoptosis, necrosis, necroptosis, pyroptosis, and 
neutrophil death through formation of neutrophil extracellular 
traps (NETs), may have diverse effects on immune responses and 
tissue damage in the context of autoimmunity (17–21). It is import-
ant to consider that whether an elicited immune response to the 
dead cell becomes tolerogenic or immunogenic is determined not 
only by whether cells die or not, but also by which cells die, and 
how and where they die (17). A combination of genetic (Table 1), 
epigenetic, and environmental factors may be involved in driving 
aberrant cell death, impaired clearance, and/or altered immuno-
logic response to the cell death products, including presentation 
of modified autoantigens (Figure 1 and refs. 17, 19, 22–25). Vari-
ous mouse models that fail to clear apoptotic cells develop lupus-
like autoimmunity (26–28), and non-phagocytosed dead cells are 
detected in SLE germinal centers, indicative of impaired clearance 
(29). These autoantigens may be presented by germinal center 
follicular DCs to B and T lymphocytes in secondary lymphoid 
tissues, resulting in loss of tolerance. The formation of ICs con-
taining autoantibodies that recognize nuclear and/or cytoplasmic 
material released from dead cells can lead to potent downstream 
inflammatory effects, including the synthesis of type I IFNs that, 

Table 1. Genes that modulate the innate immune system and are associated with SLE risk

Gene Name Putative mechanism References
FCGR (2A, 3A, 3B) Fcγ receptor Antibody and immune complex signaling 132, 199
NCF2 Neutrophil cytosol factor 2 Defects in NOX-mediated ROS 111
IFIH1 (MDA5) Interferon induced with helicase C domain 1 (encoding melanoma 

differentiation–associated protein 5)
RNA sensing, IFN signaling pathway 134

TNFAIP3 (A20) Tumor necrosis factor-α–induced protein 3 Disruption of protein’s deubiquitinase activity, increased NET formation 
through PAD4 modulation

104

PTPN22 Protein tyrosine phosphatase, nonreceptor type 22 Neutrophil activation, enhanced NET formation through PAD4 activation 3, 132
DNASE1L3 Deoxyribonuclease γ Defective nucleic acid degradation 120, 184
TREX1 Three prime repair exonuclease 1 Defective nucleic acid degradation 3
IRF5 Interferon regulatory factor 5 IFN signaling pathway 107, 132
IRF7 Interferon regulatory factor 7 IFN signaling pathway 132, 199
IRF8 Interferon regulatory factor 8 IFN signaling pathway 199
ITGAM Integrin αM Defective leukocyte adhesion and migration, enhanced IFN synthesis 132
TYK2 Tyrosine-protein kinase 2 IFN signaling pathway 132
STAT4 Signal transducer and activator of transcription 4 IFN signaling pathway 105, 132
TLR7 Toll-like receptor 7 Endosomal TLR, RNA sensing, IFN signaling pathway 199
TLR8 Toll-like receptor 8 Endosomal TLR, RNA sensing, IFN signaling pathway 199
TLR9 Toll-like receptor 9 Endosomal TLR, DNA sensing, IFN signaling pathway 199
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rial (61). This process is followed by degradation of nuclear and 
granule membranes and extrusion of NETs into the extracellular 
space (Figure 2). Gasdermin D, a pore-forming protein considered 
a key executioner of pyroptosis, has been implicated in certain 
forms of NET formation (62, 63) but not in NETs formed in lupus 
animal models (64).

The role of aberrant NET formation and clearance in various 
homeostatic and pathogenic conditions is an area of increased 
interest. Compared with males, neutrophils from healthy young 
adult females display enhanced ability to form NETs, both sponta-
neously and under microbial or sterile inflammatory stimuli (65). 
This suggests that, in women, neutrophils have a higher propensity 
to generate and externalize modified autoantigens. In individuals 
with genetic predisposition to autoimmunity, this enhanced abil-
ity to form NETs may contribute to breaking tolerance and may 
explain, in part, why women are more prone to develop autoim-
munity but also mount more robust responses to infectious agents 
than men. Female neutrophils are also more mature, activated, 

NETs are typically generated and released through a distinct 
programmed inflammatory cell death process (Figure 2 and refs. 
13, 43), although mechanisms of NET formation that do not result 
in cell death have been described (45, 46). NETs contain many 
potent antimicrobial molecules that can stimulate other neu-
trophils and immune cells (43, 47, 48). Besides microbial stimu-
li, NETs are induced by sterile inflammatory stimuli, including 
platelets (49, 50), cytokines (51), uric acid and cholesterol crystals 
(52, 53), various autoantibodies (54–56), and ICs (55, 57, 58). While 
the exact mechanisms that lead to NET formation continue to be 
further refined, this process can occur through several pathways 
that may or may not involve the NADPH oxidase (NOX) pathway 
of ROS formation and/or mitochondrial ROS synthesis (55, 59). 
Once initiated, posttranslational modifications of histones — 
including citrullination by the peptidylarginine deiminase (PAD) 
family of enzymes, particularly PAD4 (60) — promote changes in 
electrostatic interactions of DNA and histones that disrupt chro-
matin’s structure and promote decondensation of nuclear mate-

Figure 1. Role of neutrophils, NETs, and IFNs in SLE pathogenesis. Various stimuli can trigger neutrophils to undergo neutrophil extracellular trap (NET) 
formation. NETs, in turn, can externalize self-antigens, including oxidized DNA and/or DNA–antimicrobial peptide complexes that can be presented to 
antigen-presenting cells (APCs) and activate plasmacytoid DCs (pDCs) to synthesize type I IFNs. NETs have the ability to activate the NLRP3 inflam-
masome in macrophages, resulting in increased release of IL-1 and IL-18, which further prime neutrophils to undergo NET formation and perpetuate tissue 
damage. Different exogenous and endogenous stimuli can promote type I IFN generation. The synthesis of type I IFNs further modulates other APCs, 
tissue-resident cells, and T and B cell functions. NET products and IFNs modulate T cell responses and can also activate B cells to undergo class switching 
and secrete autoantibodies against a wide range of self-antigens. DNA–antimicrobial peptide complexes (like LL37-DNA) released from NETs have the abil-
ity to directly activate B cells via TLR9 and promote autoantibody generation. NETs directly stimulate T cells by decreasing their activation threshold via 
Zap70-mediated phosphorylation of the T cell receptor (TCR). Activated T cells release IL-17 and other proinflammatory cytokines that can result in endo-
thelial cell damage as well prime neutrophils to undergo further NET formation and migrate to inflamed tissues. NETs and IFNs can promote direct tissue 
damage and vascular inflammation through their effect on endothelial cells and platelets. APRIL, a proliferation-inducing ligand; BAFF, B cell activating 
factor; BLyS, B lymphocyte stimulator; LDG, low-density granulocyte.
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ligand (APRIL) (79, 80), molecules that are highly relevant to B 
cell development and function.

Several neural pathways activated by microbes or endogenous 
stimuli modulate neutrophil biology (16) through various neuro-
peptides that inhibit neutrophil function, including calcitonin 
gene–related peptide and somatostatin (81). Adenosine, a purine 
nucleoside released by neutrophils at sites of inflammation, has 
complex effects on neutrophil biology, including NET formation, 
which depend on the concentration of and signaling through its 
four receptors (82–84).

Attempts at characterizing neutrophil diversity in recent years 
have highlighted the presence of neutrophil plasticity and neutro-
phil subsets based on transcriptional, epigenetic, proteomic, and 
functional analyses that suggest diverse physiological and patho-
genic roles (Table 2 and refs. 39, 85–90). In healthy individuals, 
several distinct circulating neutrophil subsets were recently identi-
fied based on single-cell transcriptomic analysis (66). It remains to 

and readily primed to respond to danger signals than neutrophils 
from male counterparts, properties that appear to be regulated by 
sex hormones (66).

Neutrophils regulate other innate and adaptive immune cells 
in fundamental ways (Figure 1 and refs. 67, 68). These cells can 
stimulate and suppress T cell responses in context-dependent 
manners (69). Various neutrophil granule proteases inhibit T 
cell cytokine synthesis, including IL-2 and IL-6 (70). Neutro-
phils can downregulate the ζ chain of the T cell receptor through 
synthesis of arginase and ROS, promoting T cell arrest (71), and 
they can express PD-L1 to induce IFN-dependent PD-1–medi-
ated T cell apoptosis (72, 73). Conversely, neutrophils activate 
γδ T cells through cross-presentation of microbial antigens and 
cross-prime CD8+ T cells in an MHC class I–dependent manner 
(74, 75). Through T cell–independent mechanisms, splenic neutro-
phils function as B cell helpers (76) and are important sources of B 
cell activating factor (BAFF) (77, 78) and a proliferation-inducing 

Figure 2. Pathways of NET formation and targets for therapies. Stimulation of neutrophils in an individual genetically predisposed to SLE by various 
stimuli (microbial, autoantibodies, cell products, etc.) mobilizes calcium from the endoplasmic reticulum that results in activation of protein kinase C 
(PKC) and NADPH and/or mitochondrial ROS production. This leads to migration of granule protein to the nucleus and activation of peptidylarginine deimi-
nase-4 (PAD4), which induce citrullination, resulting in changes in electrostatic interactions of DNA and histones, which disrupt chromatin’s structure and 
promote decondensation of nuclear material. This process is followed by degradation of nuclear and granule membranes with mixture of granular protein 
with chromatin and eventual extrusion of NETs into the extracellular space. Gasdermin D (GSDMD) is implicated in some forms of NET formation, in which 
ROS-mediated release of neutrophil elastase (NE) processes GSDMD, which further facilitates release and activation of NE. GSDMD also localizes to the 
plasma membrane to form pores that promote cell lysis to release NETs. Possible therapies targeting critical steps in this pathway (represented by blunt 
arrows) may be beneficial for SLE. FcγR, Fcγ receptor; IFNAR, type I IFN receptor; JAK, Janus kinases; MPO, myeloperoxidase; TLR, Toll-like receptor.
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healthy control neutrophils at the transcriptomic, epigenetic, 
and functional levels (19, 85, 86, 90). LDGs are key drivers of the 
characteristic type I IFN gene signature of SLE and contribute to 
synthesis of type I IFNs and other proinflammatory cytokines. 
Lupus LDGs differ in protein content and have distinct modula-
tion of their cytoskeleton compared with normal-density control 
and lupus neutrophils. This translates into differences in modula-
tion of biomechanical properties that enhance their retention in 
microvasculature mimetics, suggesting that these cells may be 
more prone to become trapped in organs like the lung and induce 
tissue damage (90). LDGs are not a homogenous population and 
display transcriptional, epigenetic, and functional heterogeneity, 
comprising two main subpopulations of intermediate-mature and 
immature neutrophils, with various degrees of chromatin accessi-
bility and distinct differences in transcription factor motif analy-
sis (Table 2 and ref. 86). These two LDG subsets differ in various 
functional readouts, including phagocytosis, responses to type 
I IFN stimulation, NET formation, and chemotaxis. Overall, the 
bulk of SLE LDGs do not represent immature neutrophils, and 
most of them have enhanced proinflammatory roles. Further-
more, they do not display suppressive capabilities characteristic of 
myeloid-derived suppressor cells (97).

LDGs isolated from subjects with SLE (85) and other auto-
immune and autoinflammatory conditions (54, 56, 83, 98–100) 
exhibit enhanced propensity to form NETs and damage endothe-
lial cells, striated muscle cells, and other targets (19, 56). NETs 
also promote endothelial dysfunction by inducing vascular leak-
age and endothelial-mesenchymal transition through their ability 
to degrade vascular endothelial cadherin and activate β-catenin 
signaling, with implications for lupus nephritis (101). LDG NETs 
are more immunostimulatory and proinflammatory than NETs 
generated by other stimuli, with a higher abundance of modified 

be better defined whether this heterogeneity is genetically driven 
and/or secondary to differences in microbiome composition, circa-
dian rhythms, hormonal challenges, transmigration, senescence, 
and/or specific tissue microenvironments. Identifying distinct 
neutrophil subsets that play prominent roles in disease states is 
key in selectively targeting pathogenic granulocytes without ham-
pering important homeostatic functions of the neutrophil com-
partment as a whole. In this regard, the identification of a distinct 
subset of proinflammatory neutrophils, called low-density granulo-
cytes (LDGs) because of their tendency to fractionate with PBMCs 
during density separation of whole blood, has contributed to high-
lighting the putative role of neutrophil heterogeneity and dysregu-
lated neutrophil death in autoimmune diseases (85, 86, 91).

NETs display many putative proinflammatory properties that 
will be discussed in detail in the next section. In addition to their 
role in activation of the immune system, neutrophils and NETs 
contribute to resolution of inflammation by degrading chemokines 
and cytokines and activating serine proteases that decrease neu-
trophil recruitment (92). NETs can enhance Th2 cytokine expres-
sion, decrease Th1/Th17 cytokines (93), and induce both pro- and 
antiinflammatory effects on DCs (Figure 1 and refs. 30, 94). Neu-
trophils and NETs play a role in clearance of damaged endothelial 
cells and remodeling of senescent vessels in some tissues (95).

Role of neutrophils, LDGs, and NETs in SLE pathogenesis. A 
plethora of phenotypic and functional abnormalities have been 
described in lupus neutrophils (Figure 1), including increased 
cell death, impaired phagocytosis, and dysregulated oxidative 
activity (19, 47, 55, 85, 86). In SLE bone marrow, neutrophils con-
tribute to type I IFN synthesis and B cell dysregulation through 
BAFF-mediated effects (96).

Lupus LDGs are considered a distinct neutrophil subset with 
pathogenic roles. They differ from normal-density lupus and 

Table 2. Neutrophil subsets described in the literature

Neutrophil subset Description Features Function
Low-density granulocytes 
(LDGs)

Identified in various autoimmune and 
autoinflammatory diseases

Colocalize with mononuclear cells upon density 
gradient separation

Proinflammatory, with enhanced ability to form 
NETs and damage the vasculature

LDGmature Characterized in SLE CD10+; less transcriptionally active; increased 
expression of IFN and neutrophil activation genes; 

multilobulated nucleus; spontaneous NET formation

Associated with vascular damage and coronary 
plaque formation

LDGimmature Characterized in SLE CD10–; transcriptionally active; round/bilobed nucleus; 
enhanced degranulation; decreased chemotaxis  

and phagocytosis

Enhanced degranulation

N1 Tumor-associated hypersegmented neutrophils 
identified in association with factors in the 

tumor microenvironment

TNF-α; ICAM-1; FAS; hypersegmented;  
ROS-dependent cytotoxicity

Proinflammatory with antitumor cytotoxic activity

N2 Tumor-associated neutrophils seen in majority 
of untreated tumors

CCL2; CCL5; circular nuclei; T cell inactivation;  
matrix degradation 

Antiinflammatory subset with tumorigenic effects

CD16dimCD62Lbright Immature neutrophils identified in experimental 
human models of endotoxemia

CD11clo; CD11blo; CD54lo Decreased ability to opsonize bacteria and 
generate ROS

CD16brightCD62Ldim Hypersegmented neutrophils identified in 
experimental human models of endotoxemia

CD11chi; CD11bhi; CD54hi Increased capacity to produce ROS and suppress  
T cell proliferation

CD177+ Predictor of relapse in ANCA-associated 
vasculitis

CD177+ Unclear

IFNhi Found in healthy subjects Increased expression of IFN-stimulated genes  
in RNA sequencing

Unclear; higher ISG expression in women  
than men
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self-antigens, including oxidized nucleic acids, and immunogenic/
proinflammatory molecules such as LL37 and MMP-9 (19, 55, 102). 
NETs activate the NLRP3 inflammasome in macrophages, promot-
ing enhanced release of IL-1 and IL-18, a process that is heightened 
in lupus macrophages and can perpetuate tissue damage (103).

Dysregulated NET formation plays a number of putative cru-
cial pathogenic roles in SLE. In genetically predisposed individu-
als, key autoantigens that are externalized by NET formation may 
be presented to the immune system. Several genetic polymor-
phisms associated with SLE risk can enhance NET generation. For 
example, genetic alterations in TNFAIP3, encoding A20, disrupt 
the protein’s deubiquitinase domain, promoting upregulation 
of protein citrullination and NET formation through increased 
PADI4 (104). Increased circulating NET complexes have been 
reported in SLE patients with a STAT4 risk allele (105, 106). 
Healthy individuals who are homozygous for the major SLE risk 
haplotype of IRF5 display increased spontaneous NET formation, 
supporting dysregulated neutrophil function as an early mecha-
nism promoting autoimmunity (Table 1 and ref. 107).

Oxidation of nucleic acids and certain posttranslational mod-
ifications of proteins distinctly occur during NET formation and 
may promote enhanced immunogenicity. Both genomic and 
mitochondrial DNA become oxidized during NET formation. 
Enhanced nucleic acid oxidation enhances the interferogenic 
potential of NETs by extending the nucleic acids’ half-life through 
resistance to degradation by nucleases, thereby effectively engag-
ing intracellular DNA sensors that promote type I IFN responses, 
including the cGAS/STING pathway (55, 108). Ribonuclear protein 
ICs characteristic of SLE enhance mitochondrial ROS generation, 
which promotes oxidation of nucleic acids and NET formation (55). 
LDG NETs also display higher levels of oxidized nucleic acids than 
NETs purified from other sources, leading to higher induction of 
type I IFN responses in target cells (55). As such, the generation of 
modified nucleic acids by oxidation during pathogenic NET forma-
tion in SLE may be a key mechanism enhancing autoantigen half-
life and induction of type I IFN and other inflammatory respons-
es, promoting loss of tolerance. LDG NETs also display enhanced 
expression of ubiquitinated proteins that increase activation of 
proinflammatory responses in SLE macrophages (109). Overall, 
these observations indicate that not all NETs are generated equal, 
as lupus NETs are substantially more immunogenic and proinflam-
matory than NETs generated in other conditions.

The exact stimuli and pathways that lead to generation of 
NETs (59) may determine their role in lupus pathogenesis. For 
example, lupus-prone mice that lack NOX2, an enzyme involved 
in certain types of NET formation, develop exacerbated SLE 
(110), and patients with chronic granulomatous disease (CGD), 
characterized by impaired NOX activity, have a higher prevalence 
of autoimmunity. CGD patients also display an LDG subset with 
enhanced ability to form NETs with enhanced mitochondrial ROS 
synthesis and enhanced generation of IFN responses (55). In addi-
tion, genetic polymorphisms that impair NOX activity (NCF2) are 
associated with enhanced risk of developing SLE (111) and with 
accelerated lupus and enhanced NET activity in mouse models. 
As such, it is possible that a dysfunctional NOX pathway promotes 
synthesis of alternative sources of ROS (such as the mitochondria) 
that lead to aberrant pathways of nucleic acid oxidation, mitochon-

drial dysfunction, and NET formation in SLE. This is supported by 
observations that inhibitors of mitochondrial dysfunction or mito-
chondrial ROS generation ameliorate murine lupus (55, 112–114). 
Similarly, the effectiveness of targeting PAD4 as a mechanism to 
decrease NET generation and lupus in animal models appears to 
be strain and model dependent, suggesting that models associat-
ed with more aberrant innate immune dysfunction improve with 
NET inhibition through PAD4 modulation (115).

NETs can directly modulate adaptive immune responses 
in SLE. LL37-DNA ICs activate endosomal TLRs to drive poly-
clonal B cell activation and expand self-reactive memory B cells 
(116). B cells can internalize and process NET components, and 
present them on class II MHC molecules to autoreactive T cells, 
promoting generation of memory T cells. NETs directly affect T 
cells by decreasing their activation threshold via Zap70-mediated 
phosphorylation of the T cell receptor, promoting enhanced T cell 
responses to suboptimal dosage of antigens (117). Importantly, the 
internalization of NETs through various ligand-receptor interac-
tions can also drastically alter the function of other cells, including 
DCs and fibroblasts (30, 58, 94).

In addition to enhanced capacity of LDGs to form NETs, a 
subset of SLE patients have impaired clearance of circulating 
NET components, which leads to increased half-life of modified 
self-antigens and their immunostimulatory effects and association 
with higher incidence of lupus nephritis (24). Various culprits for 
disruptions in NET clearance have been proposed, including com-
plement activation within NETs, nucleic acid oxidation (108, 118, 
119), DNase I inhibitors, and anti-NET antibodies (24). Genetic 
polymorphisms that impact the function of molecules involved in 
removal of nucleic acids can impair NET clearance. For example, 
loss-of-function variants in DNASE1L3, encoding an extracellular 
nuclease endowed with the ability to degrade NETs, have been 
reported in familial forms of severe SLE (120).

Dysregulated NET formation/clearance appears to be oper-
ational in vivo, as neutrophils and NETs are increased in affect-
ed lupus skin, kidneys, and placenta, in association with tissue 
inflammation and organ damage (19, 121, 122). At this point, it has 
not been possible to differentiate which neutrophil subsets infil-
trate lupus tissues, as no distinct cell surface markers differenti-
ate LDGs from other lupus neutrophils. Given recent advances in 
differentiating these cells at the transcriptional, epigenetic, and 
protein levels (86, 90), it may be possible in the future to expand 
these tools to identify the role of LDGs in vivo at the tissue level.

LDGs and NETs in vascular damage in SLE
Accumulating evidence implicates NETs in the development of 
vascular damage and atherothrombosis (2, 19, 85, 102, 123, 124). 
NETs induce endothelial cell apoptosis through an MMP-9/ 
MMP-2 axis that is enhanced in lupus LDG NETs (102). NETs 
harm vascular smooth muscle cells through a histone-dependent 
process that induces lytic cell death and promotes instability of 
atherosclerotic plaques (125). Various mouse models of athero-
sclerosis and vasculopathy suggest that inhibiting NET formation 
can alter susceptibility to plaque formation/inflammation and 
thrombosis (124, 126–128). Overall, dysregulated NET formation 
in the context of SLE may play prominent roles in the accelerated 
vascular damage characteristic of this disease.
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SLE subjects demonstrate vascular inflammation, arterial dys-
function, and increased noncalcified plaque burden, which may 
explain the higher reported risk for acute coronary syndromes (2, 
123). Further supporting the role of LDGs in accelerated vascular 
damage in SLE, circulating numbers of these cells, as well as an 
LDG transcriptional signature, associate with increased coronary 
plaque and aortic wall inflammation, independent of other vascular 
risk factors (86, 123). Furthermore, NETs can oxidize HDL and dis-
rupt its atheroprotective role, in part by modifying the ability of this 
lipoprotein to remove cholesterol from macrophages (cholesterol 
efflux capacity [CEC]) (129). HDL oxidation by NETs promotes 
proinflammatory responses in macrophages because the modified 
lipoprotein signals through the oxidized LDL receptor-1 (LOX-1), 
enhances NF-κΒ signaling, and disrupts the ability of HDL to block 
TLR-induced pathways (129). Overall, these observations suggest 
pleiotropic vasculopathic roles of lupus LDGs and NETs.

Pathogenic crosstalk between IFNs and 
neutrophils in SLE
IFN pathway dysregulation plays critical roles in lupus pathogenesis 
(130). A significant proportion of individuals diagnosed with SLE 
display an elevated IFN signature in peripheral blood and/or affect-
ed tissues. Altered regulation of this pathway is likely an early event, 
since genetic polymorphisms that impact type I IFN signaling asso-
ciate with SLE risk (Table 1 and refs. 105, 131, 132). Genetically pre-
disposed individuals may have a lower threshold to activate the type 
I IFN pathway when exposed to exogenous stimuli (viral, ultraviolet 
light) or endogenous stimuli (dead cells, ICs, NETs) (55, 133, 134). 
In vitro and in vivo human and murine studies highlight the type I 
IFN pathway’s importance in immune dysregulation and vascular 
and tissue damage (106, 135–139). Plasmacytoid DC activation is a 
main driver for enhanced production of IFNs, but other cell types, 
particularly of myeloid origin, also contribute (55, 85, 140, 141). 
IFNs enhance expression of costimulatory molecules and antigen 
presentation by antigen-presenting cells (142) and alter B cell toler-
ance, plasma cell differentiation, immunoglobulin class switching, 
antibody production, and generation of long-lasting memory B cells 
(143–147). Type I IFNs prolong T cell survival, inhibit T cell apopto-
sis, enhance activity of cytotoxic T cells, suppress Treg activity, and 
modify T cell polarization (142, 148, 149).

In the context of neutrophil dysregulation, type I IFNs can 
prime neutrophils to form NETs (47, 86, 150) and may enhance 
their response to TLR agonists (151). Conversely, as NETs induce 
IFN production, this may lead to a vicious cycle of persistent 
inflammation (Figure 1). Compared with other immune cell types, 
LDGs display increased expression of ISGs (86) and increased 
type I IFN–induced proteins (90). Healthy young adult females 
display a neutrophil-specific increased ISG expression compared 
with males, with associated hyperresponsiveness to type I IFNs 
(66). This enhanced priming of female neutrophils may lead to 
increased responses to various danger signals. The neutrophils 
that express enhanced ISGs represent a distinct circulating neu-
trophil subset detected in healthy individuals, suggesting a puta-
tive critical role in antimicrobial and proinflammatory responses 
(Table 2 and refs. 66, 152).

Synergizing with the effects of neutrophils, type I IFNs may 
play a key role in triggering vasculopathy and premature athero-

sclerosis characteristic of SLE. Elevated levels of IFN-regulated 
proteins and ISGs associate with SLE vascular disease (119) inde-
pendent of traditional Framingham risk factors (153). Type I IFNs 
impair endothelial function (154) and hamper vascular repair in 
SLE (155). In lupus and atherosclerosis mouse models, type I IFNs 
impair vasculogenesis and promote endothelial dysfunction, ath-
erothrombosis, and plaque progression (137). IFNs inhibit endo-
thelial NO synthase and impair NO production by endothelial 
cells (156). Additionally, type I IFNs promote diet-induced insulin 
resistance by triggering liver accumulation of CD8+ T cells with 
subsequent glucose dysregulation and hepatic inflammation (157). 
Type I IFNs stimulate macrophage recruitment to arteries (158), 
promote foam cell formation (159), and predict worse outcome 
during myocardial infarction (160). ISGs are upregulated in bone 
marrow neutrophil/monocyte progenitors and circulating and 
cardiac neutrophils soon after myocardial infarction (161). Block-
ing type I IFN signaling using an anti-IFNAR1 mAb (anifrolumab) 
decreases circulating NET complexes and improves CEC, imply-
ing that type I IFN inhibition may improve cardiometabolic risk in 
SLE patients (138).

Other IFNs — type II (IFN-γ) and type III (IFN-λ1, IFN-λ2, 
IFN-λ3) — may contribute to SLE pathogenesis. Variations in cir-
culating levels of type I, II, and III IFNs and tissue responses may 
help explain heterogeneity in pattern of organ involvement and 
IFN signature in SLE (15, 162, 163). Exogenous administration 
of IFN-γ can worsen human SLE (164), and elevations in IFN-γ 
associate with disease activity. An IFN-γ signaling pathway is 
activated in SLE PBMCs (165), and elevated IFN-γ in SLE T cells 
promotes monocyte/macrophage induction of BAFF (166). IFN-γ 
may affect lupus B cell function and germinal center responses 
(167, 168). Increases in type III IFNs have been reported in SLE, 
in correlation with disease activity (169, 170). In a lupus mouse 
model, type III IFNs were shown to have a pathogenic role that 
is nonredundant relative to type I IFNs by promoting systemic 
immune dysregulation and local inflammatory effects in skin and 
kidneys (171). B cells are the main immune responders to type III 
IFNs in humans, with potentially important implications in SLE 
that require further investigation (172).

Overall, IFNs play key roles in SLE pathogenesis, and the rele-
vance of the various types of IFNs in explaining the heterogeneity 
of SLE continues to be elucidated and may be of great importance 
in the design of therapies that can target their deleterious effects 
(Table 3). A pathogenic crosstalk between IFNs and neutrophils 
may play fundamental roles in initiating, amplifying, and main-
taining various aspects of lupus immune dysregulation, as well as 
in long-term outcomes driven by the development of vasculopathy 
and end-stage organ damage (Figure 1).

Targeting neutrophils, NETs, and IFNs in SLE
Given the growing evidence for a fundamental role of the patho-
genic interplay between type I IFNs, neutrophils, and NETs in 
SLE, there is interest in targeting them for therapeutic purposes. 
Decreasing the formation, release, and/or half-life of NETs can 
be attempted by a variety of strategies (Table 3). Targeting of oxi-
dative pathways implicated in NET formation using NOX (54, 
172) or mitochondrial ROS (55) inhibitors, or ROS scavengers like 
N-acetylcysteine (NAC) (173), has been explored in vitro and in 
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ease markers, perhaps owing more to the half-life of the molecule 
used than to a lack of biological effects (183). DNaseIL3 is involved 
in degradation of extracellular DNA, like in NETs, and genetic 
deficiency of this enzyme in mice and humans is associated with 
autoantibody production and lupus features (184). Future studies 
could assess the role of this enzyme in improving NET clearance 
in SLE. Other drugs that can affect NET structures by destabiliz-
ing the neutrophil’s actin cytoskeleton have also been proposed as 
potential therapies (185).

Targeting IL-17 signaling can modulate neutrophil trafficking 
and NET formation and may mitigate lupus glomerulonephritis 
(186, 187). Inhibition of neutrophil recruitment and NET release 
in tissues may also be accomplished by interruption of interactions 
between endothelial ligands and neutrophil-expressed kindlin-3 
and β2 integrin and other similar modalities (188). Targeting var-
ious chemokines may also limit pathogenic neutrophil infiltration 
in tissues (189). While inhibition of NET formation induced by 
C5a priming is an important pathway to consider, early clinical 
trials using anti-C5 antibodies, although well tolerated, did not 
promote improvements in disease activity even if they were effec-
tive in murine lupus (190, 191). In contrast, decreasing autoanti-
bodies and ICs through a combination of mAbs targeting CD20 
(rituximab) and BLyS/BAFF (belimumab) showed some benefits 
in lupus biomarkers and reduced circulating NETs (192), although 
the benefit of combined therapy versus single therapy remains to 
be better defined.

Targeting the IFN pathway holds promise for SLE man-
agement (Table 3). Blocking mAbs that target IFN-α, IFN-γ, or 
IFNAR1 have been studied in SLE (193). Anifrolumab, which 
blocks IFNAR1, thus inhibiting the action of all type I IFNs, has 
shown promising results in one of two phase III trials, with a good 
tolerability profile and improvement in disease activity (139, 194). 
Anifrolumab decreased NET formation in SLE subjects when com-
pared with placebo and improved the function of lupus HDL and 
other cardiometabolic parameters (138). These findings suggest 

vivo. NAC decreased disease activity in SLE patients (174, 175), 
while inhibition of mitochondrial ROS or targeting of aberrant 
mitochondrial function hampered murine lupus severity (55, 112, 
113). In contrast, NOX inhibition may exacerbate SLE as a result of 
complex immunoregulatory effects (110). Inhibition of the func-
tion of various granule proteins can decrease neutrophil recruit-
ment, NET formation, and inflammatory cytokine synthesis (176) 
and may be explored in future human studies. In preclinical stud-
ies, genetic deletion of PAD2 or PAD4 reduced ISGs, autoantibod-
ies, vascular dysfunction, and clinical manifestations in TLR7- 
dependent murine lupus, but not in other lupus models (115, 177). 
Inhibiting PAD enzymes using small molecules also decreases 
NET formation and protects from organ damage and vascular dis-
ease in various mouse models of lupus and vascular damage (124, 
126, 127). Given the heterogeneity of response in murine systems, 
future studies in humans will lead to further clarification of the 
role of PAD inhibition in SLE.

The putative deleterious effects on antimicrobial responses 
following NET inhibition in humans remain to be determined. 
PAD4-knockout mice maintain other antibacterial neutrophil 
functions even if NETs are inhibited. Even in mouse strains in 
which PAD inhibition does not totally abolish NET formation, 
the immunogenic and vasculopathic effects of these NETs are 
diminished, suggesting that partial enzymatic blockade may be 
sufficient (177, 178). Patients with genetic disorders that lead to 
deficiency of molecules implicated in NET formation (PADs, 
cathepsin C) are not overtly immunosuppressed (179, 180). How-
ever, additional preclinical and clinical studies are warranted to 
assess the safety profile, in different patient populations, of strat-
egies that specifically inhibit NETs, without considerably altering 
other essential neutrophil functions.

Degradation of already formed NETs to enhance their remov-
al is another potential approach (181). Administration of DNase I 
to lupus-prone mice was beneficial (182), but early phase Ib stud-
ies of DNase I, though well tolerated, showed no changes in dis-

Table 3. Potential therapeutics that target the IFN/neutrophil pathogenic crosstalk in SLE

Target/function (molecules) Effects on neutrophils/type I IFNs References
ROS scavenger (NAC) Decreased NET release/decreased IFN responses 173–175
Mitochondrial ROS scavengers and modulators of mitochondrial 
function (MitoTEMPO, idebenone, MitoQ, inhibitor of VDAC-1 
oligomerization) 

Decreased NET release; decreased intracellular and extracellular oxidation  
of nucleic acids with decreased immunogenicity and IFN responses;  

improvement in mitochondrial function

55, 112–114

MPO inhibitors Decreased neutrophil recruitment, NET formation, and release of inflammatory cytokines 176
PAD inhibitors Reduced NET formation 124, 126, 127
Calcineurin inhibitors (cyclosporin A, tacrolimus) Modulation of calcium pools; reduced NET release 200
DNases Enzymatic degradation of NETs 181–183
Kindlin-3/integrin inhibitors Inhibition of neutrophil recruitment and NET release 188
C5a (eculizumab) Reduced NET formation and neutrophil activation 190, 191
B cells (rituximab, belimumab) Reduced NET formation and neutrophil activation 192
IFNAR blockade (anifrolumab) Decreased IFN signaling; reduced NET formation 138, 139, 194
JAK/STAT blockade (tofacitinib, baricitinib, filgotinib,  
upadacitinib, etc.) 

Blockade of signaling of IFN and other proinflammatory cytokines;  
reduced NET formation

106, 135, 198

IL-17 (secukinumab, ixekizumab, etc.) Modulation of NET formation and neutrophil migration 186, 187
Antimalarials (hydroxychloroquine, chloroquine) Decreased NET formation; weak type I IFN inhibition through modulation  

of endosomal TLRs and cGAS/STING
129
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various environmental stimuli on IFN responses, neutrophil het-
erogeneity, and the composition of NETs may help to explain the 
variability of SLE manifestations and the diverse autoantibody 
responses. Future studies should focus on better defining the 
mechanisms that regulate the cross-play between IFN and myeloid 
cells, and downstream consequences in autoimmunity, in order to 
identify promising therapies. This has implications for other chron-
ic inflammatory diseases in which type I IFNs, neutrophils, and 
NETs are proposed to play important pathogenic roles.

Several important questions remain, and the exact role of 
these immune players in disease pathogenesis may only be under-
stood if clinical trials that specifically target neutrophil dysregula-
tion, aberrant NET formation, and the neutrophil/IFN crosstalk 
in SLE come to fruition. One important aspect is whether it will 
be feasible to specifically target LDGs, while leaving other neu-
trophil subsets untouched. This will depend on further advances 
in the identification of unique markers of this neutrophil subset 
and a better understanding of the genetic, epigenetic, and envi-
ronmental factors that modulate granulocyte plasticity in health 
and disease states. While significant advances have occurred in 
characterizing LDGs, the factors that promote their formation, 
release, and pathogenicity (genetic or acquired) remain unclear. 
The extent to which NETs contribute to the various aspects of 
lupus pathogenesis and why only certain autoantibodies pro-
mote NET formation remain to be clarified. Understanding why 
different autoimmune diseases, characterized by enhanced NET 
formation, are associated with distinct autoantibody responses 
that target specific NET components will help better characterize 
heterogeneity of the NET protein and nucleic acid cargo and the 
role that genetics play in the adaptive immune response to these 
structures. This may lead to the identification of better molecular 
candidates as therapies to hopefully improve clinical outcomes.
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that suppressing the IFN/neutrophil axis may help prevent long-
term vascular complications in SLE and other diseases in which 
these pathways are dysregulated. Several medications currently 
used to treat SLE can modulate — at different levels — NET forma-
tion and/or the type I IFN signature. Antimalarials — drugs with 
proven benefit in SLE, including CVD benefits — can decrease 
NET formation in vitro (129) and are weak type I IFN inhibitors, 
potentially through modulation of endosomal TLRs (195) and the 
cGAS/STING pathway (196).

JAKs play fundamental roles in downstream signaling of mul-
tiple proinflammatory cytokines, including all IFNs (197). Addi-
tionally, JAKs directly modulate neutrophil biology. Tofacitinib, 
a pan-JAK inhibitor, reduced NET formation in vitro and in vivo 
and decreased disease manifestations, including vasculopathy, 
in lupus-prone mice (135). The JAK inhibitor baricitinib improved 
lupus clinical features in a phase II study (198), with phase III 
studies ongoing (NCT03616964, NCT03616912, ClinicalTrials.
gov). A phase Ia/IIb clinical trial using tofacitinib in mild to mod-
erate SLE showed significant decreases in type I IFN signature 
and circulating LDGs and NETs, with associated improvement in 
vascular function and cardiometabolic parameters (106). These 
observations support that targeting the neutrophil/IFN crosstalk 
with JAK/STAT inhibitors may modulate lupus vasculopathy and 
should be further explored in CVD prevention in SLE (106).

Concluding remarks and remaining questions
SLE is complex and heterogeneous, with clear dysfunction in most 
components of the immune system and therapeutic challenges giv-
en pathogenic and clinical heterogeneity. Dysregulation in crucial 
innate immune pathways implicated in host defense has profound 
implications in various aspects of lupus pathogenesis, including 
break of tolerance, induction of IFNs and other proinflammatory 
cytokines, aberrant adaptive immunity, and tissue damage. Accu-
mulating in vitro and in vivo evidence, using human and murine 
systems, supports a central role for neutrophil dysregulation in SLE 
pathogenesis, spanning loss of tolerance, induction and amplifica-
tion of inflammatory pathways, tissue damage, vascular disease, 
and cardiometabolic dysfunction. Future studies will hopefully 
help to better define subsets of patients in whom neutrophil/IFN 
interactions play particularly fundamental roles, in order to design 
better personalized therapeutic approaches. Further understand-
ing the effects of the interaction between genetic, epigenetic, and 
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