
Introduction
Most homeotherms maintain body temperature by
increasing heat production in response to cold. This
process, adaptive thermogenesis, is achieved by shivering
or by uncoupling oxidative phosphorylation in brown
adipose tissue (BAT) through uncoupling protein 1
(UCP1). The latter process is used in human newborns
and other smaller mammals. BAT thermogenesis is acti-
vated by the hypothalamus via the sympathetic nervous
system (SNS) (1–4). The norepinephrine-induced (NE-
induced) increase in cAMP rapidly activates lipolysis, ini-
tiating mitochondrial heat production, and increases
intracellular thyroxine (T4) activation to 3,5,3′-tri-
iodothyronine (T3) via the type 2 iodothyronine deiodi-
nase (D2) (5). BAT is a target of thyroid hormone and
has a large number of α1 and β1 thyroid hormone recep-
tors (TRs) (6, 7). The SNS induction of D2 activity
increases T3 concentration in BAT four- to fivefold in
only a few hours after cold exposure is initiated (8), fully
saturating TR in brown adipocytes (9).

Hypothyroid animals are unable to survive cold stress
due to impaired adaptive thermogenesis in BAT (10,
11). Hypothyroid rat brown adipocytes generate much
less cAMP in response to various adrenergic stimulators
due to changes in adrenergic receptor density, G pro-
teins, and adenylyl cyclase expression (12–14). They also

have decreased levels of UCP1, the mitochondrial pro-
tein that shunts the energy derived from mitochondri-
al fatty acid oxidation from ATP formation to thermo-
genesis (1, 11, 15–18). Physiological replacement of T4,
but not T3, rapidly restores adrenergic responsiveness,
UCP1 gene expression, and BAT thermogenesis by a
mechanism that is blocked by iopanoic acid (IOP). This
is explained by the high D2 activity in hypothyroid BAT,
which catalyzes the activation of T4 to T3 (5, 11). This
compensates for the fall in circulating T4, since admin-
istration of only small amount of T4 to hypothyroid
rats (only 25% of the daily replacement dose) increases
BAT TR occupancy to about 50%, almost exclusively
due to locally generated T3 (19).

Recent studies indicate that the TRα1 isoform is
required to maintain the normal adrenergic responsive-
ness of the brown adipocytes whereas TRβ mediates T3-
induced UCP1 gene expression (20). It is the adrenergic
pathway that mediates the three- to fourfold increase in
the activity of lipogenic enzymes observed in this tissue
during cold exposure. In isolated brown adipocytes, NE
stimulates lipogenesis only in the presence of T4, in
which case it is blocked by pretreatment with IOP (21).
Thus it is reasonable to hypothesize that D2 is required
to generate the T3 from T4, which permits the normal
acute thermogenic function of BAT to occur.
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(BAT). Here we report that despite a normal plasma 3,5,3′-triiodothyronine (T3) concentration, cold-
exposed mice with targeted disruption of the Dio2 gene (Dio2–/–) become hypothermic due to impaired
BAT thermogenesis and survive by compensatory shivering with consequent acute weight loss. This
occurs despite normal basal mitochondrial uncoupling protein 1 (UCP1) concentration. In Dio2–/–

brown adipocytes, the acute norepinephrine-, CL316,243-, or forskolin-induced increases in lipoly-
sis, UCP1 mRNA, and O2 consumption are all reduced due to impaired cAMP generation. These
hypothyroid-like abnormalities are completely reversed by a single injection of T3 14 hours earlier.
Recent studies suggest that UCP1 is primarily dependent on thyroid hormone receptor β (TRβ) while
the normal sympathetic response of brown adipocytes requires TRα. Intracellularly generated T3 may
be required to saturate the TRα, which has an approximately fourfold lower T3-binding affinity than
does TRβ. Thus, D2 is an essential component in the thyroid-sympathetic synergism required for
thermal homeostasis in small mammals.
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To define the physiological role of D2 in adaptive
thermogenesis and function of brown adipocytes,
mice with targeted disruption of the Dio2 gene (22)
were studied. D2 was found to be an essential com-
ponent of the thyroid-sympathetic synergism and
adaptive thermogenesis.

Methods
Animals and drugs. All experiments were performed under
a protocol approved by the Harvard Medical School
Standing Committee on Animals. All drugs and
reagents, unless otherwise specified, were purchased
from Calbiochem-Novabiochem Corp. (San Diego, Cal-
ifornia, USA) or Sigma Chemical Co. (St. Louis, Mis-
souri, USA). CL316,243 was a gift from K. Steiner
(Wyeth-Ayerst Research, Princeton, New Jersey, USA).
Mice with targeted disruption of the Dio2 gene were
developed in a C57BL/6-129SV strain background by
replacement of the sequence encoding amino acids
74–266 and part of the 3′ untranslated region
(nucleotides 2769 in accession no. MN 010050) with a
neomycin resistance cassette (22). D2 activity is absent
in brain, pituitary gland, and BAT of Dio2–/– mice (22).
Wild-type animals, with the same genetic background,
were used as controls. In all studies, the genotype was
confirmed by the absence of pituitary D2 activity (23).
Animals were of both sexes, approximately 2 months old,
and weighed 20–26 g at the time of the experiments.
Control animals were housed at 21°C whereas cold
exposure was at 4°C and lasted up to 24 hours. Regard-
less of ambient temperature, they were housed in indi-
vidual plastic cages, light cycles were of 12 hours, and
access to food and water was ad libitum. Core tempera-
ture was measured using a YSI 423 colonic probe (Yellow
Springs Instrument Co., Yellow Springs, Ohio, USA)
connected to a high-precision thermometer (YSI Preci-
sion 4000A Thermometer; Yellow Springs Instrument
Co.). To measure temperature changes in interscapular
BAT (IBAT) in response to NE infusion, animals were
anesthetized with a mixture of urethane (560 mg/kg)
and chloralose (38 mg/kg) given intraperitoneally the
morning of the experiment and kept on a warm (30°C)
pad throughout the experiment. A polyethylene (P-50)
cannula was inserted into the left jugular vein for NE
infusion. IBAT temperatures were measured using a pre-
calibrated thermistor probe (YSI 427; Yellow Springs
Instrument Co.) secured under the brown fat pad. IBAT
temperature was monitored during a period of 10 min-
utes to obtain a stable baseline prior to NE infusion. NE

infusion (103 pmol/min) was performed with an infu-
sion pump (Model 2274; Harvard Apparatus, Holliston,
Massachusetts, USA) at a rate of 0.459 µl/min.

Studies in isolated brown adipocytes. Brown adipocytes
were isolated as described after minor modifications
(14, 24, 25) from 8–10 animals per experiment. Oxygen
consumption was measured in a biological oxygen
monitor (YSI Model 53, Yellow Springs Instrument
Co.) as described (24). Lipolysis was studied by meas-
uring glycerol release in the incubation medium. Incu-
bation was stopped by the addition of perchloric acid
to 1% final concentration and glycerol measured as
described (26). UCP1 mRNA levels were measured in
isolated brown adipocytes after 6 hours’ incubation.
Cells were processed for RNA extraction using TRIzol
Reagent according to the instructions of the manufac-
turer (Life Technologies Inc., Grand Island, New York,
USA). Northern analysis was performed using 10 µg
RNA per lane and a full length mouse UCP1 cDNA
kindly provided by Bradford Lowell. 28S is the riboso-
mal RNA stained by ethidium bromide. cAMP was
measured by RIA (14).

Analytical procedures. DNA and protein were measured
as described (27, 28). Triglycerides (TGs) were quanti-
tated after lipase digestion and glycerol measurement.
Serum creatine kinase was measured by an automated
ultraviolet enzymatic technique (Dade Behring Inc.,
Newark, Delaware, USA). Mitochondrial UCP1 levels
were measured by Western blot after 5 µg total mito-
chondrial protein was resolved in a 12% SDS-PAGE and
electrotransferred to a PVDF membrane. Anti-UCP1
antiserum was a gift from J.E. Silva and was used at
1:2000 dilution. Mitochondrial COX-II gene was ana-
lyzed by Southern blot after 10 µg total BAT DNA was
digested with NcoI and probed with COX-II cDNA
kindly provided by Bruce Spiegelman.

Statistical analysis. Comparisons were performed by
Student t test, and multiple comparisons were by
ANOVA followed by the Student-Newman-Keuls test.

Results
Because of the important role of D2 in mediating feed-
back regulation of the hypothalamic-pituitary-thyroid
axis by circulating T4, Dio2–/– animals have elevated
serum concentrations of T4 but normal serum T3
(Table 1). This internal compensation permits Dio2–/–

animals to remain systemically euthyroid.
We compared the response of Dio2–/– mice to cold

stress (24 hours at 4°C) to that of wild-type mice. As
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Table 1
Serum concentration of T4 and T3, and BAT D2 activity of Dio2–/– and wild-type mice exposed at 4°C

Group T4 (ng/ml) T3 (ng/ml) D2 (fmol T4/min/mg protein)

21°C 4°C 21°C 4°C 21°C 4°C

Wild-type 41 ± 3.5 37 ± 4.1 0.61 ± 0.12 0.70 ± 0.09 317 ± 6.7 5517 ± 1083A

Dio2–/– 68 ± 5.5A 71 ± 9.2 0.57 ± 0.10 0.62 ± 0.08 Below BG Below BG

Values are the mean ± SD of four to six animals per parameter. AP < 0.05 versus wild-type animals by ANOVA. BG, background.



expected, Dio2–/– mice had no D2 activity while IBAT
D2 in wild-type mice increased approximately 17-fold
(Table 1). In both strains, plasma T4 and T3 remained
constant (Table 1). Remarkably, the Dio2–/– animals
survived cold exposure although their core tempera-
ture fell about 2.3°C, to 34.8°C, by 24 hours (vs. a
∼0.7°C reduction in wild-type animals; Figure 1a),
indicating that adaptive thermogenesis was deficient.
More severe hypothermia was prevented by compen-
satory shivering as reflected by the increase in serum
creatine kinase activity only in the D2-deficient ani-
mals (Figure 1b). Dio2–/– animals lost about 5% of their
body weight during the 24-hour period, whereas there
was no weight change in wild-type animals (Figure 1c).
Food intake was monitored in both groups (∼4.5 g/24
h/animal at 21°C in both groups), and, although it
increased during cold exposure, no differences were
found between Dio2–/– and intact animals (8.0 ± 0.4
g/24 h/animal at 4°C in wild-type vs. 7.6 ± 1.1 g/24
h/animal at 4°C in Dio2–/–).

To evaluate the capacity for thermogenesis of BAT
directly, we implanted a thermistor under the IBAT
pad to quantitate heat production in response to a
constant intravenous NE infusion (1 nmol/min) in
anesthetized mice (20, 29). In wild-type mice, NE infu-
sion elicited a rapid and progressive increase of about

0.9°C in BAT temperature (Figure 1e). On the other
hand, thermogenesis is substantially impaired in
Dio2–/– mice at all times studied with a maximal
increase of only about 0.4°C (Figure 1e). Thus,
impaired BAT thermogenesis in the D2-deficient ani-
mal is the cause of the hypothermia.

The absolute number of mitochondria in Dio2–/–

IBAT was normal as assessed by Southern blot analysis
of the mitochondrial COX-II gene (Figure 1d). Total
mitochondrial protein (Table 2) and UCP1 (Figure 1d)
were also normal. However, the IBAT weighed about
40% more than in wild-type animals due to an approx-
imately twofold increase in TG content (Table 2). This
suggested an increase in the ratio of TG synthesis to
lipolysis, which is also characteristic of BAT in chroni-
cally hypothyroid rats (30–32).

We then examined various other metabolic parame-
ters essential to cellular thermogenesis in Dio2–/– iso-
lated brown adipocytes (14, 24, 25). Both O2 consump-
tion and lipolysis were reduced in response to NE;
CL316,243, a selective activator of the β3 receptors in
brown adipocytes (33); or forskolin (Figure 2, a–f). In
addition, while the basal content of UCP1 mRNA was
not different between the two groups, there was an
approximately 50% reduction of the acute increase in
UCP1 mRNA in the Dio2–/– adipocytes (Figure 2, g and
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Figure 1
Response of Dio2–/– and wild-type mice to
cold exposure or NE infusion. All results are
the mean ± SD of 4–12 mice per time point.
*P < 0.05 versus wild-type time point by
ANOVA. (a) Core temperature; (b) serum
creatine kinase; (c) relative changes in body
weight during cold exposure; (d) mitochon-
drial UCP1 levels by Western analysis and
mitochondrial COX-II gene by Southern
analysis; (e) temperature changes in IBAT in
response to NE infusion. After 10 minutes
all Dio2–/– points are significantly different
versus wild-type animals by ANOVA. WT,
wild-type; KO, knockout.

Table 2
Comparison of IBAT of Dio2–/– and wild type mice acclimated at 21°C.

Group Weight DNA Triglycerides Mitochondrial protein

(mg) /BW × 10–3 (µg) (mg) /IBAT × 10–1 /DNA × 10–1 (mg) /protein × 10–1 /DNA × 10–1

Wild-type 54 ± 7 2.0 ± 0.1 73 ± 4 19 ± 2.9 3.5 ± 0.8 2.6 ± 0.6 7.0 ± 1.2 2.2 ± 0.2 1.0 ± 0.2
Dio2–/– 67 ± 9 2.8 ± 0.2A 81 ± 11 42 ± 4.8A 6.3 ± 0.9A 5.2 ± 0.8A 7.4 ± 1.1 1.7 ± 0.1 0.9 ± 0.1

Values are the mean ± SD of four to six animals per parameter. AP < 0.05 versus wild-type animals by Student t test.



h). These deficits can all be explained by the impair-
ment in cAMP generation in response to either NE,
CL316,243, or forskolin (Figure 2, i–k). This points to
impaired adenylyl cyclase function as the major cause
of the reduction in thermogenesis.

To confirm that this abnormality was explained by
intracellular T3 deficiency, a single injection of 5 µg T3
per 10 g BW was given intraperitoneally and brown
adipocytes isolated 14 hours later. This dose was
designed to saturate BAT TRs by increasing plasma T3
(34). While such short treatment has no effects on BAT
function of intact rats (35), T3 injection increased the
cAMP generation up to the levels seen in cells obtained
from intact mice (Figure 2, i–k); it also increased the

metabolic responses of the brown adipocytes (Figure 2,
a–f). Remarkably, while T3 pretreatment did not alter
the basal UCP1 mRNA, it also normalized the response
of UCP1 mRNA to NE (Figure 2, g and h).

Discussion
Type 2 deiodinase is well recognized as an important
enzyme in BAT physiology, based largely on studies of
hypothyroid rats. These studies have focused on its role
in mitigating the effects of hypothyroxinemia on
brown adipocytes (6, 9, 11, 19, 30). While this is rele-
vant for understanding the role of D2 in sustaining
adaptive thermogenesis during iodine deficiency (36),
there is little information defining the role of D2 in this
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Figure 2
Metabolic responses of isolated
brown adipocytes from Dio2–/– and
wild-type mice. *P < 0.05 versus
wild-type time point by ANOVA.
(a–c) O2 consumption. Each point
is the mean ± SD of four measure-
ments of about 50,000 cells. (d–f)
Glycerol released during incubation
with NE or forskolin at 37°C for 
1 hour. (g) The same conditions as
in d except that about 500,000 cells
were used. (h) Densitometry of the
Northern blots shown in g. (i–k)
The same conditions as in d except
that cAMP is shown.



process in iodine-sufficient animals (35, 37). The pres-
ent results using the Dio2–/– mouse provide the first
direct evidence that D2 is also required for the normal
response to cold stress in a normal mammal.

D2 activity generates a significant fraction of circu-
lating T3 in rats (and presumably mice), and its
absence could cause peripheral hypothyroidism (38).
However, D2-deficient mice compensate by raising the
plasma T4 concentration. They have normal serum T3,
the main determinant of the thyroid status in skeletal
muscle and other visceral organs, and therefore are sys-
temically euthyroid. D2 is widely expressed in differ-
ent areas of the CNS, where it accounts for 50–80% of
the TR-bound T3 in the rat (39). It is not known
whether the D2-deficient mice have CNS “hypothy-
roidism,” but, if so, this could impair the neural relay
of peripheral thermal information to the hypothala-
mus and/or the autonomic and behavioral ther-
moregulatory responses. The latter is not the case
since the basal core temperature of Dio2–/– mice is nor-
mal at 21°C (∼7°C below thermoneutrality). In addi-
tion, during cold exposure (4°C) they display charac-
teristic nesting behavior, piloerection, and shivering,
indicating that environmental and visceral tempera-
tures are sensed, and appropriate responses generated,
by the D2-deficient hypothalamus. However, the in
vivo studies demonstrate that BAT from Dio2–/– mice
has an intrinsic defect in thermogenesis, failing to
increase temperature normally during NE infusion
(Figure 1e). This defect was confirmed in in vitro stud-
ies of isolated brown adipocytes (Figure 2).

Based on the importance of T3 for mitochondrial
biogenesis (40) and UCP1 gene expression (41, 42), one
might expect reduced UCP1 as the most likely cause of
impaired BAT thermogenesis in these mice. However,
both the BAT mitochondrial number and the basal
UCP1 content are normal (Figure 1d; Table 2). The ele-
vated TG content suggests that lipolysis is impaired,
and the results in the adipocytes confirm this (Table 2;
Figure 2, d–f). NE-stimulated O2 consumption and the
normal increase in UCP1 mRNA in response to adren-
ergic agonists are all impaired. In BAT, β3 adrenergic
receptors account for as much as 50% of the maximal
cAMP response to NE, and they are increased in
hypothyroid brown adipocytes (13). Therefore, the sim-
ilar impairment in cAMP response to NE, the β3 recep-
tor–selective agonist CL316,243, and forskolin suggests
that the major deficit is in the adenylyl cyclase rather
than in the adrenergic receptor number or affinity. A
similar impaired response is typical of hypothyroid
brown adipocytes, and it is entirely reversed by T3
administration (12–14).

Thus, despite the normal plasma T3 and increased
T4 concentrations, the BAT of the Dio2–/– mouse is
functionally hypothyroid in its response to cold stress.
The D2-catalyzed T4 monodeiodination in BAT
amplifies the cAMP response to adrenergic stimula-
tion, which, in turn, enhances lipolysis and mitochon-
drial thermogenesis (Figure 3). The fact that isolated

Dio2–/– adipocytes cannot generate normal quantities
of cAMP implies that tonic, D2-catalyzed T4-to-T3
conversion is required for this process. The normal
plasma T3 concentration of the Dio2–/– animals is not
sufficient for this purpose although it is adequate to
sustain a normal UCP1 concentration. Recently, it has
been shown that a preferential TRβ agonist, GC-1, nor-
malizes UCP1, but not the impaired thyroid-sympa-
thetic synergism in hypothyroid mice, suggesting that
the former may be TRβ-mediated and the latter
dependent on TRα (20). The affinity of rat TRα for T3
is about fourfold lower than that for TRβ (43). Thus,
chronic intracellular T3 production may be required
to provide the higher concentration of intracellular
hormone necessary to occupy the requisite number of
α TRs in brown adipocytes. This suggests, in turn, that
the thyroid-sympathetic synergism in BAT, and per-
haps other tissues, is functionally linked to TRα.

The D2-generated supplemental T3 also enhances
the cAMP-generated acute increase in UCP1 mRNA
via increased UCP1 gene transcription and by pro-
longing the mRNA half-life (41, 42). Since the Dio2
gene contains a cAMP-responsive element (44, 45), by
increasing the cAMP response, the increased T3 also
enhances a feed-forward cycle stimulating the
increased synthesis of the short-lived D2 protein (t1/2

20–30 min) (23, 46, 47) (Figure 3).
In mice with no UCP1 or dopamine β-hydroxylase,

shivering alone is not sufficient to sustain core tem-
perature for more than a few minutes (17, 48). Given
the impaired response of Dio2–/– BAT to cold stress, why
does this mouse not succumb as do hypothyroid ani-
mals? The increased creatine kinase and the significant
weight loss during cold stress in the Dio2–/– mice indi-
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Figure 3
Role of the D2-generated intracellular T3 in the cellular thermogen-
esis in brown adipocytes. A plus sign within a circle indicates
enhancement of that process by T3.



cate that prolonged shivering provides the extra heat
required for their survival. This suggests that D2 defi-
ciency causes a milder defect in BAT heat production
and does not eliminate nonshivering adaptive thermo-
genesis completely. This phenotype permits a better
understanding of how thyroid hormone, UCP1, and
cAMP coordinate in producing heat in response to
cold. The superior thermal homeostasis of Dio2–/– mice
compared with hypothyroid rodents can be explained
by the 50% reduction in UCP1 content and the
enhanced thermodynamic efficiency of skeletal muscle
in the latter (11, 49). This reduces the effectiveness of
shivering as a protective thermogenic mechanism. In
contrast, both UCP1 and shivering are normal in
Dio2–/– mice. However, shivering is a much less efficient
mechanism for heat production than nonshivering
thermogenesis due to the increased blood flow to
superficial tissues and the associated convective heat
loss (50). This can explain the loss of approximately 5%
of the body weight of the Dio2–/– mice in just 24 hours
of cold exposure despite normal food ingestion, indi-
cating that thermogenesis in BAT is a much more effi-
cient mechanism for maintaining core temperature.
Thus, the SNS-responsive Dio2 gene in BAT is essential
to support its basal adrenergic responsiveness as well as
the development of the intracellular thyrotoxicosis,
thereby permitting thermal homeostasis of small
mammals with a minimum of caloric expenditure.
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