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Introduction
Obstructive sleep apnea (OSA) is a widespread respiratory disor-
der affecting 20%–30% of men and 10%–15% of women in the 
United States (1, 2). It is characterized by brief (tens of seconds) 
and repeated interruptions of breathing manifested as either 
complete (apnea) or partial (hypopnea) collapse of the upper 
airway during sleep. OSA prevalence varies with ethnicity and is 
higher in African Americans than in Whites of comparable age 
and body weight (3).

Interruption of breathing by OSA results in intermittent hypoxia 
(IH), mild hypercapnia, and arousals from sleep. OSA is associated 
with a number of comorbidities, including hypertension (2, 4–6), 
type 2 diabetes (T2D) (7–9), and cognitive decline (2, 10, 11). Recently 
developed rodent and cell culture models of IH patterned after blood 
O2 saturation profiles during OSA have provided important insights 
into the molecular mechanisms underlying comorbidities associated 
with OSA. Hypoxia-inducible factor-1 (HIF-1) and HIF-2 belong to 
the HIF family of transcriptional activators. Activation of HIF-1 and 
HIF-2 mediates physiological adaptations to sustained hypoxia such 
as that experienced during extended sojourns to high altitudes (12). 
This Review focuses on emerging evidence implicating dysregulated 
transcription of HIF-1 and HIF-2 as a molecular mechanism under-
lying hypertension, T2D, and cognitive dysfunction stemming from 
OSA-induced IH.

OSA and hypertension
Using the apnea-hypopnea index (AHI; calculated as [{number 
of apnea events + hypopnea events}/total number of minutes of 
actual sleep time] × 60) as a measure of OSA severity, a popu-
lation-based study found a strong correlation between severity 
of OSA and hypertension (4). According to this report, patients 

with an AHI of 5–15 events per hour and >15 events per hour are 
2 and 3 times more at risk of developing hypertension, respec-
tively. The correlation between the severity of OSA and hyper-
tension was independent of confounding factors including BMI, 
age, and sex (4), and OSA was identified as a risk factor for resis-
tant hypertension (13). Although arousals from sleep result in 
transient increases in systemic blood pressure, OSA-associated 
hypertension was independent of arousals as assessed by the 
sleep fragmentation index (a calculation that reflects the num-
ber of awakenings to stage 1 sleep from deeper stages of sleep 
relative to total sleep time) (14).

A recent study reported that the prevalence of cardiovascular 
pathologies, including coronary heart disease, heart failure, and 
stroke, depends on OSA patient subtypes (15). Based on daytime 
symptoms, four OSA subtypes were identified in a cohort of 1207 
patients with an AHI index of ≥15 events per hour: (a) disturbed 
sleep, (b) minimally symptomatic, (c) excessively sleepy, and (d) 
moderately sleepy. Of these subtypes, the excessively sleepy sub-
type exhibited a greater risk of developing cardiovascular disease 
(hazard ratios, 1.7–2.4) than other subtypes. Whether the preva-
lence of hypertension depends on OSA subtype is not known.

Activation of the sympathetic nervous system constricts 
blood vessels and elevates blood pressure by increasing vas-
cular resistance. Substantial evidence indicates that persistent 
activation of the sympathetic nervous system is a major contrib-
uting factor for OSA-associated hypertension. Several inves-
tigators recorded muscle sympathetic nerve activity (SNA), a 
reflection of systemic vascular resistance, in OSA patients (16–
18). Normal subjects without OSA exhibited low levels of mus-
cle SNA during sleep (19–21), while this phenotype was absent 
in OSA patients (22). OSA patients exhibit elevated SNA during 
daytime, wherein apneas are absent and arterial blood gases 
are normal (22). The elevated daytime SNA was independent 
of obesity, a common comorbidity in these patients (22). Cir-
culating and urinary catecholamines (both norepinephrine and 
epinephrine), biomarkers of increased SNA, are also elevated in 
OSA patients (17, 18, 23–25).
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may be beneficial for mitigating OSA by stabilizing upper airway 
function (32). However, long-term IH exposure might increase the 
number of apneas (32–34).

OSA-induced hypertension and sympathetic nerve excitation 
have also been observed in animal models. A canine model of OSA 
exhibits daytime hypertension (35). Rodent models of IH patterned 
after blood O2 saturation profiles during OSA also develop hyper-
tension (36–44), and the magnitude and the onset of hypertension 
depend on the paradigm of IH (Table 1 in ref. 45). IH increases the 
activity of cervical, thoracic, splanchnic, renal, and lumbar sympa-
thetic nerves (44, 46–49). As in human subjects (29–31), acute IH 
results in long-lasting increases in SNA in anesthetized rats (50).

Norepinephrine released from sympathetic nerves constricts 
blood vessels and maintains vascular tone. IH-exposed rats exhib-
it elevated resting vascular tone (51). In addition, chronic expo-
sure to IH leads to vascular remodeling of resistance vessels, as 
evidenced by attenuated vasoconstriction by norepinephrine (51) 
and impaired vasodilatation by acetylcholine (52).

Besides blood vessels, the adrenal medulla is another major 
target organ of the sympathetic nervous system. Adrenal medul-
lary chromaffin cells (AMCs) are a major source of epinephrine 
and norepinephrine (40). AMCs of adult rats are normally insen-
sitive to hypoxia, and catecholamine secretion evoked by low O2 
is neurogenic (40). Exposure to IH induces hypoxic sensitivity in 
adult rat AMCs and decreases neurogenic catecholamine release 
(40). By inducing hypoxic sensitivity, IH may facilitate catechol-
amine secretion from AMCs during each episode of apnea, which 
may contribute in part to the elevated circulating levels. These 
studies suggest that chronic exposure to IH results in remodeling 
of end organs innervated by the sympathetic nerves.

How relevant are the rodent models of IH in understanding 
OSA-associated hypertension and SNA? It appears that reoxygen-
ation is more important than the hypoxic phase of IH (53, 54). It 
is likely that OSA patients exhibit substantial interindividual vari-
ations in the duration of apnea and the magnitude of O2 desatu-
rations. Moreover, there are no data showing what percentage of 
OSA subjects exhibit O2 desaturations equivalent to those used in 
rodent studies and whether these subjects exhibit hypertension. 
Despite these limitations, the available evidence suggests that 
rodent models of IH mirror blood pressure and SNA phenotypes 
reported in OSA patients, and thus these models appear appropri-
ate for elucidating the underlying mechanisms.

Physiological basis of OSA-dependent 
hypertension
How might IH increase SNA and blood pressure? Arterial blood O2 
levels are continuously monitored by peripheral chemoreceptors, 
in particular the carotid bodies (CBs) (55). Hypoxemia increases 

Intermittent hypoxia: stimulus for hypertension
Intermittent hypoxia (IH) associated with OSA is characterized 
by short and high-frequency bouts of blood O2 desaturations as 
opposed to long, low-frequency hypoxic bouts seen with short 
ascents and descents from high altitude (26). Healthy humans 
subjected to 10 days of IH patterned after blood O2 saturations 
during OSA exhibit increases in SNA (27). Exposing healthy sub-
jects to hypobaric hypoxia for 4 weeks, simulating an altitude of 
5260 m, also increases SNA, which persists for 3 days after return 
to sea level (28), whereas challenging subjects with a single epi-
sode of IH leads to a long-lasting increase in SNA (29–31), indicat-
ing that IH is a more potent stimulus for eliciting long-lasting SNA 
than hypobaric hypoxia. The persistent SNA evoked by IH may 
explain daytime elevation of SNA in OSA patients. Although OSA 
also results in mild hypercapnia, repetitive arousals, and changes 
in intrathoracic pressures, these findings suggest that IH is a major 
stimulus for evoking SNA and the ensuing hypertension in OSA 
patients. While the above-outlined studies indicate that IH is mal-
adaptive as it causes hypertension, mild IH induces respiratory 
plasticity manifested as long-term facilitation of breathing, which 

Figure 1. Schematic presentation of HIF-dependent signaling pathways in 
OSA-induced hypertension. Hypoxia-induced changes in HIF-1α and HIF-2α 
levels exacerbate increases in ROS levels. Within the carotid body, ROS eleva-
tions modify the balance between CO and H2S (lower left) as well as attenuate 
the carotid baroreflex (lower right), resulting in increased sympathetic nerve 
activity that can drive hypertension. Ca2+, calcium; CO, carbon monoxide; CSE, 
cystathionine-γ-lyase; ECE, endothelin-converting enzyme; ET-1, endothelin-1; 
H2S, hydrogen sulfide; HO-2, heme oxygenase-2; NOX, NADPH oxidase.
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tation and hypertension. Like OSA patients (57–59), IH-exposed 
rodents exhibit augmented hypoxic ventilatory response, a hall-
mark of the CB chemoreflex (66, 67). Neurophysiological studies 
revealed two major effects of IH on the CB: (a) enhanced sensitiv-
ity to hypoxia (68); and (b) progressive increases in baseline CB 
sensory nerve activity in response to IH, a phenomenon called 
sensory long-term facilitation (sLTF) (69). It was proposed that CB 
sLTF, by activating the chemoreflex, contributes to the daytime 
elevation of SNA seen in OSA patients (70).

Baroreflex activation inhibits SNA and causes bradycardia 
(decreased heart rate), and these responses are markedly atten-
uated in IH-treated rats (71). IH-treated rats exhibit attenuated 
activation of carotid baroreceptor in response to graded elevation 
of carotid sinus pressure (71). Thus, studies on rodents show that 
disrupted balance between chemo- and baroreflex is an important 
physiological basis for IH-evoked SNA and hypertension such as 
seen in OSA patients.

Molecular basis for OSA hypertension:  
hypoxia-inducible factors
Emerging evidence implicates transcriptional changes by hypoxia-
inducible factors (HIFs) as an important molecular mechanism 
underlying alteration of chemo- and baroreflex functions by IH lead-
ing to SNA and hypertension. HIF-1 was the first identified member 
of the HIF family, followed by HIF-2 (72). While HIF-1 is expressed 
in all mammalian cells, HIF-2 expression is restricted to certain tis-
sues, including developing blood vessels, lung, adrenal medulla, and 
CB (73–75). Both HIF-1 and HIF-2 are composed of an O2-regulated α 
subunit and a constitutive β subunit (12).

Differential regulation of HIF-α isoforms by IH
Continuous hypoxia activates both HIF-1 and HIF-2 (76, 77). In 
striking contrast, IH results in differential regulation of HIF-
1α and HIF-2α. IH alters HIF-α isoform expression in all three 
major components of the arterial chemoreflex pathway, includ-
ing (a) the CB (sensor); (b) the nTS and RVLM (central compo-
nent); and (c) the adrenal medulla (end organ of the sympathet-
ic nervous system).

Both HIF-1α and HIF-2α are expressed in glomus cells, the pri-
mary O2-sensing cells of the CB (76, 77). IH increases HIF-1α (78) 
and decreases HIF-2α (79) protein expression in the CB. Exposing 
rat pheochromocytoma (PC12) cell cultures, which share many 
similarities to glomus cells, to an IH paradigm similar to that 
employed in rodents increases HIF-1α protein (80) and decreas-
es HIF-2α protein expression (79). Given that the CB receives the 
highest blood flow relative to tissue weight as compared with oth-
er organs (81–83), changes in HIF-α expression are likely due to 
direct effects of IH on glomus cells.

Studies in PC12 cells further showed that the increased HIF-1α 
is due to increased generation of reactive oxygen species (ROS) by 
xanthine oxidase, leading to subsequent activation of HIF-1α pro-
tein synthesis by mammalian target of rapamycin (mTOR) as well 
as decreased proline hydroxylation (84–86). The decrease of HIF-
2α expression by IH is due to increased protein degradation by 
Ca2+-dependent calpain proteases (79, 85). HIF-2α degradation by 
calpains involves the C-terminus part of the HIF-2α protein (85). 
Cell culture studies further revealed that IH-induced changes in 

CB sensory nerve activity, which is transmitted to neurons in the 
nucleus tractus solitarius (nTS) and rostral ventrolateral medulla 
(RVLM) in the brainstem, from which the efferent signal is trans-
mitted to the sympathetic nervous system. It was proposed that 
IH, by activating the CB chemoreflex, contributes to elevated 
SNA and hypertension in OSA patients (56). Supporting this pos-
sibility are the findings that (a) OSA patients exhibit augmented 
CB chemoreflex as indicated by exaggerated sympathetic nerve 
responses to acute hypoxia compared with normal subjects (57–
59); (b) brief hyperoxia, which reduces CB sensory nerve activity, 
produces a more pronounced ventilatory depression (58, 60) and 
reduces blood pressure (59) in OSA patients but not in control 
subjects; and (c) OSA subjects with surgically ablated CBs do not 
develop hypertension (61).

In addition to the chemoreflex, arterial baroreflex is anoth-
er major regulator of sympathetic tone and blood pressure (62). 
OSA patients exhibit an impaired baroreflex, especially during 
non–rapid eye movement (NREM) sleep (63, 64). These studies 
suggest that a combination of augmented CB chemoreflex and 
reduced baroreflex contribute to elevated SNA and hypertension 
in OSA subjects.

The carotid sinus nerve carries sensory information from the 
chemoreceptors in the CB as well as arterial baroreceptors located 
in the carotid sinus region. Studies on IH-exposed rodents have 
shown absence of sympathetic nerve activation and hypertension 
after sectioning of sinus nerves or selective ablation of the CB (65).

Rodent models provided further insights into the contribution 
of chemo- and baroreflexes to IH-evoked sympathetic nerve exci-

Figure 2. Activation of epigenetic mechanisms involving DNA methyl-
ation of antioxidant enzyme genes either in response to long-term IH 
associated with untreated and undiagnosed OSA or in young adults who 
had apnea of prematurity in neonatal life. AOE, antioxidant enzyme; 
DNMTs, DNA methyltransferases.
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Dysregulated HIFs increase ROS
OSA is characterized by periods of hypoxia and reoxygenation that 
resemble ischemia/reperfusion. It was proposed that increased 
ROS generated during IH contributes to hypertension associated 
with OSA (91). Supporting such a possibility, OSA patients exhib-
it elevated ROS levels in monocytes expressing integrin αX chain 
protein (CD11C) (92). OSA patients exhibit elevated levels of bio-
markers of ROS in plasma, urine, and the exhaled breath (93). 
Grebe et al. (94) reported that OSA patients exhibit decreased 
vasodilation of the brachial artery, and this response was normal-
ized by antioxidant treatment, indicating contribution of ROS to 
increased vascular tone in OSA patients. A recent meta-analysis 
by Chen et al. (95) suggested that continuous positive airway pres-
sure (CPAP) therapy lowers circulating ROS levels (as indicated 
by malondialdehyde measurements, an index of oxidized lipids) 
in elderly individuals with obesity, and patients with severe OSA.

IH-treated rodents exhibit elevated ROS levels in all three major 
components of the chemoreflex pathway, including the CB (69), the 
nTS and RVLM (65), and the adrenal medulla (40, 65), as evidenced 
by decreased aconitase enzyme activity (40, 65, 69), an established 
biochemical marker of ROS (96), and increased malondialdehyde 
levels (97). Likewise, IH increases ROS levels in the carotid sinus 
region, the primary site of carotid baroreceptors (71).

The following findings suggest that dysregulated HIF-α iso-
forms mediate ROS elevation by IH: (a) HIF-1α–heterozygous 
mice exposed to IH do not exhibit elevated ROS levels (66); (b) 
blocking HIF-1α expression in the nTS, RVLM, and adrenal medul-
la by CB ablation prevents ROS elevation by IH (65); and (c) HIF-
2α–heterozygous mice, like IH-treated WT mice, exhibit elevated 
ROS levels in the CB and adrenal medulla under basal conditions, 
and antioxidant treatment prevents this response (90).

Normalizing ROS levels by antioxidant treatment prevents the 
following IH-induced responses: (a) augmented CB response to 
hypoxia and sLTF (69, 97–99); (b) attenuated carotid baroreceptor 
activity and baroreflex function (71); and (c) elevation of plasma 
catecholamine levels and hypertension (40). These findings sug-
gest that increased ROS generation resulting from dysregulated 
HIF-α isoforms is an important cellular mechanism underlying 
enhanced chemoreflex and attenuated baroreflex leading to sym-
pathetic nerve excitation and hypertension due to IH.

How do dysregulated HIFs lead to an increase in ROS levels 
by IH? Cellular ROS levels are balanced through generation by 
pro-oxidant enzymes and degradation by antioxidant enzymes. 
The following section summarizes studies showing that IH-in-
duced dysregulation of HIF-α isoforms increases ROS by altering 
the transcription of genes encoding pro- and antioxidant enzymes.

HIF-1 mediates Nox2 gene activation by IH
The family of NADPH oxidases (NOXs) are pro-oxidant enzymes 
and include NOX1, NOX2, NOX3, and NOX4 (100). Of the four 
isoforms, NOX2 is expressed in major components of the chemo-
reflex pathway (65, 98). IH increases Nox2 mRNA in the CB and 
brainstem, areas associated with the chemoreflex, but not in the 
cerebellum, a brain area not associated with the chemoreflex (87). 
The IH-induced effect on Nox2 mRNA is absent in HIF-1α–hetero-
zygous mice after exposure to IH (66). Disrupting HIF-1α protein, 
either by RNA interference or by pharmacological approaches 

HIF-α isoforms are associated with increased HIF-1–dependent 
and reduced HIF-2–dependent transcriptional activities (79, 80).

Differential regulation of HIF-α isoforms by IH was also seen 
in neurons of the nTS and RVLM as well as the adrenal medulla 
(65, 66, 79, 87). The effects of IH on the nTS, RVLM, and adrenal 
medulla are indirect and require sensory input from the CB, as evi-
denced by absence of HIF-α isoform changes by IH after selective 
ablation of the CB (65).

Physiological consequence of HIF-α 
dysregulation
Complete deficiency of HIF-1α is embryonically lethal at mid-ges-
tation, whereas mice with heterozygous deficiency of Hif1a devel-
op normally and are indistinguishable from WT littermate controls 
in normal oxygen conditions (88, 89). Unlike WT mice, IH-treated 
HIF-1α–heterozygous mice exhibit striking absences of augment-
ed CB sensory nerve response to acute hypoxia, sLTF, sympathetic 
nerve excitation (evidenced by absence of elevated plasma cate-
cholamine levels), and hypertension (66).

In contrast, HIF-2α–heterozygous (Hif2a+/−) mice under bas-
al room air conditions exhibit cardiorespiratory responses sim-
ilar to those in WT mice treated with IH, including augmented 
CB responses to acute hypoxia, sympathetic nerve activation as 
indicated by elevated plasma catecholamines, hypertension, and 
increased incidence of apnea (90). Blocking IH-induced HIF-2α 
degradation with systemic administration of a calpain inhibi-
tor prevents development of hypertension (79). These findings 
demonstrate that dysregulated HIF-α isoforms act as an important 
molecular mechanism underlying augmented CB chemoreflex, 
sympathetic nerve excitation, and hypertension caused by IH. 
Whether IH-induced attenuation of arterial baroreflex is altered 
in HIF-1α– and HIF-2α–heterozygous mice is not known.

Figure 3. Schematic presentation of proposed mechanism(s) for HIF-1–
dependent pancreatic β cell dysfunction manifesting as hypersecretion 
of insulin and insulin resistance and cognitive dysfunction evoked by 
OSA/IH. GluN1, glutamate ionotropic receptor NMDA type subunit 1; LTP, 
long-term potentiation.
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IH increases H2S production in the CB (44). The increased 
H2S production by IH is due to ROS-dependent inactivation of 
HO-2 (44), thereby increasing CSE-dependent H2S generation 
in the CB. Pharmacological or genetic blockade of H2S synthesis 
prevents IH-evoked CB activation, sympathetic nerve excitation, 
and hypertension (44). These findings suggest that increased ROS 
generation resulting from dysregulated HIF-α isoforms mediates 
IH-induced CB hyperactivity and hypertension through oxidative 
inactivation of HO-2 and a consequent increase in H2S produc-
tion (Figure 1). HO-2–knockout mice exhibit greater abundance 
of CSE-derived H2S in the CB, augmented chemoreflex, and OSA, 
and CSE inhibitor prevents OSA in HO-2–null mice (108).

Baroreflex attenuation by IH requires ROS/
endothelin signaling
Peng et al. (71) examined the mechanism(s) underlying reduced 
carotid baroreflex function in IH-treated rats. They found elevat-
ed levels of the vasoconstrictor endothelin-1 (ET-1) in the carotid 
sinus region of IH-treated rats. The increased ET-1 levels were due 
to ROS-dependent activation of endothelin-converting enzyme 
(ECE), which generates biologically active ET-1. The reduction in 
carotid baroreceptor responses to increased carotid sinus pressure 
in IH-treated rats was due to the vasoconstrictor effect of ET-1 on 
the carotid sinus, as indicated by normalization of baroreceptor 
function by an ETA receptor antagonist. Furthermore, antioxi-
dant treatment blocked the effects of IH on ET-1 levels and ECE 
activity, reversed the attenuated carotid baroreceptor activity, and 
restored the baroreflex function in rats. These findings demon-
strate that HIF-dependent ROS production contributes to IH-in-
duced attenuation of carotid baroreflex function by activating 
ET-1 signaling (Figure 1).

Is OSA hypertension reversible?
CPAP is the current treatment of choice for OSA. However, 
meta-analysis studies indicate that CPAP is either ineffective 
(109) or minimally effective (110, 111) in reversing OSA hyperten-
sion. Lack of CPAP efficacy may in part be due to poor adherence 
rates (39%–50%) (112, 113). Also, studies on rodents suggest that 
IH leads to vascular remodeling (51, 52, 114), which may not be 
ameliorated by CPAP. It is possible that hypertension could be sec-
ondary to other OSA comorbidities that may not be addressed by 
CPAP therapy. Moreover, emerging evidence suggests that various 
factors contribute to the genesis of OSA, including (a) compro-
mised pharyngeal anatomy; (b) inadequate upper airway muscle 
function; (c) hypersensitive chemoreflex feedback loop (i.e., high 
loop gain); and (d) low arousal threshold (115, 116). These findings 
suggest that OSA is a multifactorial disorder, and future develop-
ment of therapies targeted to each of the contributing factors may 
be necessary to effectively control blood pressure in OSA patients.

In addition to the above possibilities, the effectiveness of 
CPAP may depend on the duration of OSA. For instance, CPAP 
may be less effective in normalizing blood pressure in undiag-
nosed and untreated patients experiencing OSA for several years. 
Such a possibility is partly supported by a recent study showing 
complete reversal of hypertension, sympathetic nerve activation, 
and augmented CB chemoreflex evoked by short-term IH (10 days 
of exposure) upon recovery in room air. In striking contrast, simi-

(digoxin or YC-1), prevents upregulation of Nox2 mRNA, pro-
tein, and enzyme activity in IH-treated PC12 cells and mouse 
embryonic fibroblasts (MEFs) (87). Conversely, increasing HIF-1α 
expression, either by treatment of PC12 cells with an iron chelator 
(desferoxamine) or by overexpression of HIF-1α, increases Nox2 
mRNA, protein expression, and enzyme activity (87) in a manner 
similar to that of IH. These findings suggest that HIF-1 mediates 
IH-induced upregulation of the major pro-oxidant enzyme NOX2.

Inhibition of complexes I and III of the mitochondrial elec-
tron transport chain also increases ROS generation (101). Com-
plex I activity was inhibited in CBs of IH-treated rats (69), 
resulting in elevated ROS abundance (99). IH-evoked complex I 
inhibition was prevented by blocking NOX2 function (102), and 
was absent in mice deficient in gp91phox (the catalytic subunit 
of NOX2) (102), suggesting a crosstalk between NOX2 and the 
mitochondrial complex I. After termination of IH, ROS genera-
tion by NOX2 returns to baseline within 3 hours, whereas ROS 
generation by complex I inhibition persists as long as 16 hours 
(102), suggesting that a feed-forward ROS-induced ROS mecha-
nism is responsible for long-lasting generation of ROS by IH.

HIF-2 contributes to antioxidant enzyme 
decreases by IH
IH decreases the mRNA, protein, and enzyme activity of antiox-
idant enzymes (79). Scortegagna et al. reported that HIF-2 is a 
potent activator of genes encoding antioxidant enzymes (103). 
The following findings suggest that IH-induced degradation of 
HIF-2α protein contributes to downregulation of antioxidant 
enzymes, such as superoxide dismutase 2 (SOD2): (a) overex-
pression of transcriptionally active HIF-2α prevents IH-evoked 
decrease in Sod2 mRNA and blocks increased ROS abundance in 
PC12 cells; and (b) treating IH-exposed rats with ALLM (N-acetyl-
l-leucyl-l-leucyl-l-methionine), a calpain inhibitor, blocks HIF-
2α degradation, restores SOD2 enzyme activity, normalizes ROS 
levels, and blocks the development of hypertension (79).

The following section summarizes signaling mechanisms by 
which ROS mediate activation of CBs and reduction of barorecep-
tor activity by IH.

Chemoreflex activation by IH requires ROS/H2S 
signaling
Recent studies suggest that hypoxic sensing by the CB requires 
O2-dependent interplay between carbon monoxide (CO) and 
hydrogen sulfide (H2S). The enzyme heme oxygenase-2 (HO-2) 
generates CO in the CB (104). Hypoxia inactivates HO-2, leading 
to stimulus-dependent reduction in CO production (105). Given 
that CO is a physiological inhibitor of hypoxic sensing in the CB 
(105–107), and hypoxia reduces CO production (107), it was pro-
posed that sensory nerve activation by hypoxia is due to release 
of the inhibitory effect of CO on the CB (104). Glomus cells of the 
CB also express cystathionine-γ-lyase (CSE), an enzyme that cata-
lyzes H2S synthesis (105, 106). Hypoxia increases H2S generation 
in the CB in a stimulus-dependent manner (106). CO suppresses 
H2S synthesis by inhibiting CSE activity in the CB through protein 
kinase G–dependent phosphorylation at the serine377 residue (107). 
Thus, CB hypoxic sensing uses a biochemical signaling mechanism 
involving O2-dependent interplay between CO and H2S.
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lar effects evoked by long-term IH (30 days of exposure) were not 
reversed even after 30 days of recovery in room air (34).

Though OSA is a condition affecting adults, infants born 
preterm also exhibit high incidence of apneas (apnea of prema-
turity), a major clinical problem in neonatology. CB chemoreflex 
is augmented in apnea of prematurity as indicated by enhanced 
hypoxic ventilatory response (117). Simulating apnea of prema-
turity by exposing neonatal rat pups to IH from ages P0 to P10 
markedly enhances hypoxic response of the CB (118, 119) and 
augments chemoreflex (118, 119). Remarkably, the effects of neo-
natal IH were not reversed and persist into adulthood after return 
to normal air. Adult rats exposed to IH during neonatal life (from 
P0 to P10) exhibit hypertension, elevated plasma catecholamines, 
irregular breathing with high incidence of apneas, and augmented 
hypoxic response of the CB and chemoreflex (119, 120), findings 
reminiscent of high incidence of hypertension and sleep-disor-
dered breathing in young adults born preterm (121, 122).

Long-term IH activates epigenetic mechanisms
Persistent hypertension, sympathetic excitation, and augmented 
chemoreflex seen in adult rats treated with long-term IH and rats 
treated with IH during the neonatal period are associated with per-
sistent elevation of ROS levels and reduced expression of genes 
encoding antioxidant enzymes in the chemoreflex pathway (34, 
120, 123). Long-lasting physiological responses to a given pertur-
bation are attributed to gene regulation by epigenetic mechanisms. 
DNA hypermethylation is one such epigenetic mechanism that 
results in long-lasting suppression of gene expression (124). Rats 
treated with long-term IH as well as rats treated with IH in the 
neonatal period show DNA hypermethylation of genes encoding 
antioxidant enzymes in the CB chemoreflex pathway. This effect is 
accompanied by increased activity of the DNA methyltransferase 
enzyme, which catalyzes DNA hypermethylation (34, 120). Further 
analysis revealed hypermethylation of a single CpG dinucleotide in 
the region close to the transcription start site of the Sod2 gene in 
rats exposed to long-term (34) or neonatal IH (34, 120). Treating 
rats with decitabine, a DNA-hypomethylating agent, during expo-
sures to long-term and neonatal IH blocked DNA hypermethyla-
tion, restored antioxidant enzyme gene expression, normalized 
ROS levels in the chemoreflex pathway, prevented the develop-
ment of hypertension, and normalized breathing irregularities (34, 
120). These studies suggest that long-lasting suppression of anti-
oxidant enzyme genes by DNA methylation results in persistent 
increase in ROS levels in the chemoreflex pathway leading to per-
sistent hypertension in rats treated with long-term or neonatal IH 
(Figure 2). The mechanism(s) by which long-term and neonatal IH 
activates DNA methylation remains to be investigated.

The following section summarizes how, outside of hyperten-
sion, HIF-1–dependent ROS generation also contributes to devel-
opment of T2D and cognitive dysfunction in rodent models of IH.

Type 2 diabetes and OSA
Type 2 diabetes (T2D) is another major comorbidity in OSA patients 
(7–9). T2D is characterized by initial insulin resistance followed by 
progressive loss of pancreatic β cell function (125). IH-treated mice 
manifest elevated basal plasma insulin levels and insulin resistance 
as evidenced by increased homeostatic model assessment (HOMA) 

index, an established method for assessing insulin resistance (126). 
ROS levels are elevated in pancreatic β cells of IH-treated mice, and 
antioxidant treatment blocks the elevated insulin secretion and 
normalizes the HOMA index (126). Pancreatic β cells express HIF-
1α but not HIF-2α. Recent studies suggest that HIF-1 contributes to 
insulin secretion from β cells under basal conditions (127, 128). HIF-
1α–heterozygous mice treated with 30 days of IH showed a remark-
able absence of elevated fasting plasma insulin levels and absence 
of insulin resistance as assessed by HOMA (Figure 3). Further stud-
ies are needed to investigate the mechanism(s) by which HIF-1 con-
tributes to pancreatic β cell function in the setting of chronic IH.

Cognitive decline and OSA
Cognitive decline is a recognized comorbidity of OSA (10, 129–
134). Bucks et al. proposed two possible mechanisms by which 
OSA may cause cognitive decline: (a) cognitive impairment from 
OSA may be secondary to daytime sleepiness affecting attention; 
and (b) OSA may lead to cerebral vasculature remodeling, neural 
damage, and cell death, resulting in cognitive dysfunction (135). 
OSA has been shown to affect the hippocampus, which is a major 
brain structure associated with learning and memory (136–139).

A recent histopathological study using autopsy of brain tissues 
from OSA subjects showed a correlation between OSA severity 
and histopathological changes in the hippocampus including cor-
tical thinning in the molecular layer of the dentate gyrus and the 
CA1 area as well as decreased myelin of the deep layers of ento-
rhinal cortex (140). The regions of decreased cortical thickness 
and demyelination were seen in spatial memory pathways (140). 
Studies on rodents showed that IH impairs spatial learning and 
memory (141, 142) and weakens synaptic plasticity of the CA1 area 
of the hippocampus (143–147). The effects of IH were mediated 
by increased generation of ROS (148, 149). IH increased HIF-1α 
protein expression in hippocampal neurons (147, 149), upregulat-
ed Nox4 mRNA, and elevated ROS levels (150). Increased ROS 
production, in turn, downregulated GluN1, an obligatory subunit 
of the N-methyl d-aspartate receptor (NMDAR), leading to dis-
rupted long-term potentiation of hippocampal neuronal activity 
and impaired spatial memory function (150). IH-induced deficits 
in spatial memory were absent in HIF-1α–heterozygous mice and 
in WT mice treated with MnTMPyP, a membrane-permeable anti-
oxidant (150). These findings suggest that IH results in HIF-1α–
dependent destabilization of NMDAR-dependent synaptic phys-
iology and spatial memory (Figure 3).

Perspective
Thus far, experimental models of IH have shown that imbalance 
of HIF-α isoform expression by activation of ROS signaling leads 
to maladaptation. However, it remains to be established wheth-
er HIF-1 and HIF-2 imbalances occur in OSA patients. Besides 
OSA, ROS-dependent activation of the chemoreflex has also been 
implicated in autonomic pathologies associated with congestive 
cardiac failure (CCF) (151, 152). Whether CCF leads to HIF-α iso-
form imbalance in the chemoreflex remains an interesting ques-
tion. While studies on HIF-2α–heterozygous mice show height-
ened chemoreflex, studies on adult mice with inducible knockout 
of HIF-2α report absences of hypoxic ventilatory response, a hall-
mark of the CB chemoreflex (153), and loss of ventilatory adap-
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tation to sustained hypoxia (154). Adult mice with inducible loss 
of HIF-2α showed selective loss of response to severe hypoxia 
(partial pressure of oxygen [pO2] ~10–15 mmHg) by glomus cells 
(the primary O2-sensing cells of the CB) (153). Thus, results from 
studies with inducible knockout of HIF-2α appear to be opposite to 
those obtained in mice with global partial knockdown of HIF-2α. 
Whether the differing phenotypic changes are due to absence of 
HIF-2 since birth, as is the case with the global partial knockout 
animals, as opposed to inducible complete loss of HIF-2α in adult 
life, remains to be investigated.

Although rodent models showed the involvement of HIF-1α in 
cognitive decline due to IH (150), the role of HIF-2α has not yet been 
investigated. Further studies are needed to establish whether HIF-
1α activation in hippocampal neurons is due to a direct effect of IH 
or indirectly secondary to neural activation.

Given the modest efficacy of CPAP in mitigating OSA comor-
bidities, there is an unmet need for alternative strategies for pre-
venting OSA-associated pathologies. Currently, inhibitors of HIF-2 
signaling for kidney cancer are in clinical trials (155). Further devel-

opment of pharmacological inhibitor(s) of HIF-1 may be one possi-
bility for preventing some of the pathologies associated with OSA; 
pharmacological inhibitors of CSE-derived H2S, a downstream tar-
get of HIF signaling, are another possibility. Indeed, a recent study 
provides proof of concept for the latter possibility, wherein system-
ic administration of CSE inhibitor blocks IH-induced sympathetic 
nerve activation and hypertension in rodents (108).
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