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Introduction
The pancreas is highly sensitive to pressure (1–3), and elevated 
pancreatic duct pressure is a major cause of acute pancreatitis. A 
gallstone impacted at the junction of the pancreatic and common 
bile ducts increases pancreatic duct pressure and can initiate pan-
creatitis (4–6). Intraductal pancreatic pressure is also increased 
during the clinical procedure endoscopic retrograde cholan-
giopancreatography (ERCP) when radiocontrast dye is injected 
into the pancreatic duct to visualize the pancreas (7). Acute pan-
creatitis develops in up to 20% of high-risk patients undergoing 
this procedure (8). Mechanical injury to the pancreas through 
abdominal trauma is also a common cause of pancreatitis (9). 
Recently, our group demonstrated that the pancreatic acinar cell 
senses pressure through the mechanically activated ion channel 
Piezo1 and that activation of Piezo1 on acinar cells by pressure or 
a Piezo1-specific agonist induced acute pancreatitis (1). Moreover, 
mice with acinar cell–specific deletion of Piezo1 were protected 

from pressure-induced pancreatitis. Thus, mechanical activation 
of Piezo1 is sufficient to cause pancreatitis.

Mechanical forces including static pressure, fluid shear stress, 
and membrane stretch activate Piezo1 channel opening, which 
allows cations, most notably Ca2+, to flow into the cell (10–14). 
Recently, Yoda1, a pharmacological agonist selective for Piezo1, but 
not Piezo2, has been identified (15). Piezo1 is expressed in numerous 
tissues that respond to shear force, including the vascular endothe-
lium, lung, skin, and urinary bladder (16, 17). Studying the signaling 
of Piezo1 in the pancreas offers an attractive model for unveiling the 
pathological response because of the uniquely sensitive behavior of 
pancreatic acinar cells to alterations in intracellular calcium levels.

Intracellular Ca2+ concentrations are tightly regulated in pancre-
atic acinar cells and provide the major signal for digestive enzyme 
secretion (18, 19). Cholecystokinin (CCK), acetylcholine, and bombe-
sin are pancreatic secretagogues that raise cytosolic calcium ([Ca2+]i) 
and thus stimulate secretion (20–22). Binding of these agonists to 
their respective G protein–coupled receptors triggers the release of 
Ca2+ from the ER through increased activity of phosphoinositide-spe-
cific phospholipase C that cleaves phosphatidylinositol, 4,5-bisphos-
phate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 
(23). Notably, this Ca2+ rise is necessary for normal cell signaling. Per-
turbation of Ca2+ signaling is associated with pancreatic acinar cell 
death (23). Supramaximal concentrations of agonists such as CCK 
lead to activation of calcium release–activated channels (CRAC) 
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The calcium-permeable ion channel transient receptor poten-
tial vanilloid subfamily 4 (TRPV4) is expressed in various tissues 
and cells (e.g., smooth muscle of the urinary bladder, epithelial 
cells of kidney, airways, sensory neurons, and vascular endo-
thelium) and is involved in several physiological processes and 
diseases, including regulation of blood flow, shear-induced vaso-
dilation, and epithelial ciliary activity (30–37). TRPV4-mediated 
pathological events include neurogenic inflammation, hyperalge-
sia, endothelial dysfunction, and pulmonary and cardiac tissue 
fibrosis (33, 36, 38–40).

TRPV4 may be activated by physical force (e.g., shear stress, 
membrane stretching) and hypotonic cell swelling, but this sens-
ing appears to be indirect (41, 42). However, the mechanism by 
which these physical forces activate TRPV4 is not clear.

in the plasma membrane (24), resulting in a sustained elevation in 
[Ca2+]i and intracellular activation of proenzymes in pancreatic aci-
nar cells that ultimately leads to cell death (24). Due to their inten-
sive protein synthesis, acinar cells have high energy requirements 
and mitochondrial demands. Mitochondrial dysfunction can lead 
to impairment in energy-requiring processes, including proenzyme 
sorting, intracellular lysosome and zymogen vesicle formation and 
stability, and cellular integrity (25). Disruption of any of these func-
tions can lead to pancreatitis. Calcium overload causes opening of 
the mitochondrial permeability transition pore (MPTP), collapses the 
mitochondrial membrane potential, and disrupts the proton gradi-
ent necessary for ATP production that is required to satisfy the high 
energy demands of the acinar cell (25–29). Therefore, maintenance 
of proper mitochondrial function is necessary to prevent pancreatitis.

Figure 1. Piezo1 activation increases [Ca2+]i and 
induces cell death in pancreatic acini. (A) Live-cell 
imaging of pancreatic acini loaded with calcium 
6-QF. Pancreatic acini were incubated with Yoda1 
(25 μM) in the presence (2 mM) or absence (0 mM) 
of extracellular calcium. Yoda1 was added at the 
time indicated by the arrow. (B) Comparison of the 
Yoda1-induced peak [Ca2+]i is expressed as the ratio 
of peak intensity (Fmax)/baseline intensity (F0) from 
32 to 41 cells. (C) The effects of Yoda1 (50 μM) on 
[Ca2+]i in the absence or presence of the calcium 
chelator BAPTA-AM (20 μM). (D) Statistical analysis 
of peak (Fmax/F0) from 25 to 30 cells in which acinar 
cells were preincubated 30 minutes with BAPTA-AM 
(20 μM) before Yoda1 application. (Fmax/F0) was 
calculated from the time periods 1 to 2 minutes and 
5 to 6 minutes to assess the initial transient and 
sustained [Ca2+]i levels, respectively. (E) The effects 
of CCK (1 nM) on LDH release from isolated pancre-
atic acini from WT and Piezo1aci-KO mice from 4 to 6 
experiments. (F) The effects of Yoda1 (50 μM) on LDH 
release from acinar cells with and without preincu-
bation of BAPTA-AM for 30 minutes are shown from 
3 to 5 experiments. (G) Brightfield images of pancre-
atic acini at different time points in the presence of 
Yoda1 (50 μM). Images represent a plane (5 μm thick) 
from a Z-stack of captured images to visualize the 
changes in cell morphology and granule movement. 
Images were captured with a ×100 oil objective. 
Statistical analyses were performed using Student’s 
t test (B, D) and 1-way ANOVA with Tukey’s multiple 
comparison test (E and F). *P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001, ****P ≤ 0.0001. Data are shown as 
mean ± SEM. Scale bar: 10 μm. 
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in pancreatic acinar cells (Piezoaci-KO mice) (1). We visualized the 
effect of Yoda1 on pancreatic acini over time by live-cell imaging. 
Application of Yoda1 (50 μM) caused swelling of WT pancreatic 
acinar cells and release of zymogen granules from the basolateral 
surface and gradually ruptured the cell membrane (Figure 1G and 
Supplemental Video 2). Pancreatic acinar cells from Piezo1aci-KO 
mice did not respond to Yoda1 (Supplemental Video 3).

In pancreatic acinar cells, CCK at supraphysiological concen-
trations produces a sustained elevation of [Ca2+]i, the initial phase 
of which is due to release of Ca2+ from the ER (23). Following this 
initial rise, the sustained phase occurs through the activation of 
CRAC, which allows extracellular Ca2+ to flow into cells. In order 
to determine whether the Piezo1-mediated sustained [Ca2+]i ele-
vation is due to CRAC activation, we examined the effects of the 
CRAC inhibitor CM4620, which selectively inhibits Orai, the 
main component of CRAC (49). Preincubating acinar cells with 
CM4620 for 1 hour blocked the sustained elevation in [Ca2+]i pro-
duced by CCK (100 and 1000 pM) (Supplemental Figure 2, A–C). 
Notably, CM4620 did not completely block the [Ca2+]i rise induced 
by either concentration of CCK, and a residual calcium wave was 
always observed following CCK despite CM4620 administration 
(Supplemental Figure 2, A–C). This persistent calcium wave was 
possibly due to Ca2+ released from ER stores (50, 51). In contrast to 
the effects on CCK-stimulated [Ca2+]i, CM4620 did not alter the 
rise in [Ca2+]i following Yoda1 stimulation (Supplemental Figure 2, 
D and E), indicating that CRAC channels are not the source of sus-
tained [Ca2+]i elevation following Piezo1 activation.

To determine whether Piezo1 gene deletion altered the aci-
nar cell response to secretagogue stimulation, we examined the 
effects of CCK on [Ca2+]i in pancreatic acini from Piezo1aci-KO 
mice. Pancreatic acini from WT and Piezo1aci-KO mice responded 
equally to both physiological (20 pM) and supraphysiological (1 
nM) CCK concentrations (Supplemental Figure 3, A–D). In order 
to confirm that Piezo1 and CCK stimulate [Ca2+]i through distinct 
mechanisms, we first activated Piezo1 channels in pancreatic aci-
ni through mechanical force by applying a blunt glass pipette to 
the surface of acinar cells to a depth of 5 μm for 1 second. This 
blunt pushing produced a transient [Ca2+]i elevation. Cells were 
then exposed to CCK (20 pM). Slight mechanical pushing did 
not alter the sensitivity of pancreatic acini to subsequent CCK 
exposure (Supplemental Figure 3, E and F). In light of the finding 
that Piezo1 and CCK affect [Ca2+]i through separate pathways, we 
sought to determine whether together Yoda1 and CCK accentu-
ated the deleterious effects on pancreatic acinar cells. Compared 
with individual application of Yoda1 and CCK, acinar cell death 
was greater when cells were exposed to both Yoda1 and CCK 
(Supplemental Figure 3, G and H).

Piezo1 agonist Yoda1 induces pathological events in pancreatic 
acini. Pancreatic acinar cells possess abundant mitochondria and 
are highly metabolically active. Proper mitochondrial function is 
critical for cellular homeostasis, and mitochondrial dysfunction 
has been implicated in the pathogenesis of pancreatitis. We postu-
lated that the elevations in cytoplasmic [Ca2+] that were observed 
with Yoda1 stimulation and Piezo1 activation in pancreatic acinar 
cells may affect mitochondrial depolarization. To test this hypoth-
esis, we used a cell-permeable and mitochondrial-potential sensi-
tive fluorescent dye, tetramethyl rhodamine ester (TMRE) (52, 53). 

Hypotonic cell swelling and shear stress stimulate phospho-
lipase A2 (PLA2) activity (42). In general, elevated PLA2 activity 
triggers the release of arachidonic acid (AA) and its metabolite, 
5′,6′-epoxyeicosatrienoic acid (5′,6′-EET) (43). 5′,6′-EET is an 
endogenous ligand that can activate TRPV4 (43). However, the 
mechanism by which physical stimuli activate PLA2 is not known. 
Phosphorylation of PKA and PKC increases the sensitization of 
TRPV4 (44, 45); therefore, it is possible that activation of TRPV4 
through AA may require PKA or PKC phosphorylation (44).

Here, we demonstrate that activation of Piezo1 in pancreatic 
acinar cells by direct chemical stimulation and fluid shear stress pro-
duced a sustained increase in cytosolic Ca2+, followed by mitochon-
drial depolarization and premature trypsinogen activation. Moreover, 
Piezo1-induced Ca2+ signaling is distinctly different from CCK-in-
duced Ca2+ signaling, suggesting that multiple pathways may contrib-
ute to the initiation of pancreatitis. To explain how Piezo1 activation 
led to sustained and pathological elevation in [Ca2+]i, we explored oth-
er potential calcium-entry pathways and discovered that both mouse 
and human pancreatic acinar cells express the calcium-permeable 
channel TRPV4. We also demonstrate that Piezo1 induced the activa-
tion of PLA2, which causes TRPV4 channel opening.

Results
Piezo1 induces sustained cytoplasmic Ca2+ elevation and cell death. In 
order to determine whether calcium signaling is responsible for the 
effects of Piezo1 on the pancreas, we first examined the ability of 
the chemical Piezo1 agonist Yoda1 to regulate intracellular calci-
um ([Ca2+]i) in freshly isolated pancreatic acini. Changes in [Ca2+]i 
were determined in acinar cells loaded with the calcium indicator 
calcium 6-QF. We recently reported that the Piezo1 antagonist 
GsMTx4 inhibits the Yoda1-mediated [Ca2+]i rise in pancreatic 
acini (1, 46). Here, we demonstrate the contribution of external 
and intracellular free calcium on Piezo1-mediated [Ca2+]i. Yoda1 
in the presence of bath calcium (2 mM) produced an initial tran-
sient Ca2+ rise, followed by sustained intracellular calcium eleva-
tion (Figure 1, A and B, and Supplemental Video 1; supplemental 
material available online with this article; https://doi.org/10.1172/
JCI134111DS1). Removal of external calcium completely abolished 
the Yoda1-mediated [Ca2+]i rise (Figure 1, A and B). However, prein-
cubating cells with BAPTA-AM (a cell-permeable Ca2+ chelator) for 
30 minutes abolished the sustained Ca2+ rise (Figure 1, C and D). 
CCK is a secretagogue that stimulates pancreatic enzyme secretion 
by increasing [Ca2+]i. In contrast to the effects on Yoda1-induced 
[Ca2+]i, preincubation of cells with BAPTA-AM completely elimi-
nated the effect of CCK on [Ca2+]i (Supplemental Figure 1).

To examine the effect of sustained Piezo1 activation on [Ca2+]i 
and its relation to cellular injury, we treated pancreatic acini 
with Yoda1 and cellular injury was assessed by measuring lac-
tate dehydrogenase (LDH) release. Cells were preincubated with 
or without BAPTA-AM. Chelating intracellular free calcium with 
BAPTA-AM protected pancreatic acini from Yoda1-induced LDH 
release (Figure 1F). We confirmed the specificity of these effects 
for Piezo1 by comparing the cytotoxic effects of CCK (Figure 1E). 
At high concentrations, CCK is well known to cause cell damage 
in vitro and pancreatitis in vivo (47, 48). As shown in Figure 1E, 
CCK produced comparable cell damage in pancreatic acini from 
both WT mice and mice with selective genetic deletion of Piezo1 
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Figure 2. Piezo1 activation induces mitochondrial depolarization and trypsinogen activation in pancreatic acini. (A) Brightfield and fluorescence images 
of TMRE-loaded pancreatic acini 0 and 12 minutes after Yoda1 (50 μM) application. (B) Traces of live-cell TMRE fluorescence intensity of single acinar cells 
over time following the administration of Yoda1 (arrow). FD is the decrease in TMRE fluorescence, and F0 is the baseline TMRE intensity. Acini from WT or 
Piezo1aci-KO mice were treated with the mitochondrial uncoupler FCCP (10 μM), Yoda1 (50 μM), Yoda1 + GsMTx4 (5 μM), or CCK (10 nM). A representative 
tracing from 3 experiments is shown. (C) Mean decrease in TMRE intensity from B is depicted. n = 3–5 independent experiments with 15–20 cells in each 
experiment. (D) Decrease in TMRE intensity of pancreatic acini is shown in response to CCK (10 nM) from 60 cells over 20 minutes. (E) Decrease in fluores-
cence intensity of TMRE in pancreatic acinar cells upon Yoda1 application with or without preincubation of BAPTA-AM (20 μM) for 20 minutes is shown 
from 29–45 cells. (F) Live-cell imaging of intracellular trypsin activation with CCK (10 nM) and Yoda1 (50 μM) treatments. Scale bar: 10 μm. (G) Time course 
of Yoda1-induced trypsin activation is shown for 3 experiments. (H) Peak BZiPAR fluorescence was measured in acini from WT mice treated with Yoda1 in 
the absence or presence of GsMTx4 (5 μM) or in acini from Piezo1aci-KO mice. n = 3–5 independent experiments with 16–31 cells. (I) Pancreatic acini from 
Piezo1aci-KO mice had a trypsin activation response to CCK (10 nM) similar to that of WT mice. n = 3 from 16–20 cells. Statistical analyses were performed 
using Student’s t test (D) and 1-way ANOVA (C, E, H, and I). Data are shown as mean ± SEM. **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.
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intracellular-free calcium (Figure 2E). We observed that 
Yoda1-induced mitochondrial depolarization occurred at 
a higher rate than that induced with CCK (10 nM) (Fig-
ure 2, A–D). Yoda1-mediated mitochondrial depolariza-
tion occurred within 3 minutes of application; however, 
CCK-mediated mitochondrial depolarization occurred 
more slowly and was observed only after 10 minutes of 
drug exposure.

Premature zymogen activation and autodigestion of 
acinar cells are critical events in pancreatitis. Moreover, 
pathophysiological elevations in cytoplasmic [Ca2+] have 
been associated with intracellular trypsinogen activa-
tion (52, 54). We postulated that prolonged activation 
of Piezo1 may cause trypsinogen activation through 
a calcium-mediated pathway. We visualized real-
time trypsinogen activation in pancreatic acini using 
a trypsin-sensitive, cell-permeable fluorescent probe, 
rhodamine 110, bis(CBZ-l-isoleucyl-l-prolyl-l-argi-
nine amide) (BZiPAR), which becomes fluorescent once 

it is cleaved specifically by trypsin (52, 55). Application of either 
Yoda1 (50 μM) or CCK (10 nM) activated trypsin in pancreatic 
acini over time (Figure 2, F and G, and Supplemental Video 4). 
Yoda1 induced trypsin activation within 10 minutes of application; 
however, CCK stimulated trypsin activation more slowly and was 
observed only after 20 minutes of drug exposure (Supplemental 
Video 4). GSMTx4 blocked the Yoda1-induced trypsin activation 
in pancreatic acinar cells (Figure 2H). Pancreatic acinar cells from 
Piezo1aci-KO mice did not respond to Yoda1 (Figure 2H). Further-
more, CCK-mediated trypsin activation was similar in acini from 
WT and Piezo1aci-KO mice (Figure 2I).

TMRE accumulates as punctate distributions in mitochondria due 
to high negative membrane potential. The fluorescence intensity 
of this punctate pattern declines following mitochondrial depolar-
ization. Application of Yoda1 (50 μM) throughout the period of live-
cell imaging significantly decreased TMRE fluorescence intensity 
indicative of depolarization of the mitochondria (Figure 2, A–C). 
GsMTx4 blocked the Yoda1-induced mitochondrial depolarization 
in WT cells. Yoda1 did not depolarize mitochondria in Piezo1aci-KO 
cells (Figure 2, B and C). Pancreatic acinar cells preincubated with 
BAPTA-AM for 20 minutes were protected from Yoda1-induced 
mitochondrial depolarization, suggesting a significant role for 

Figure 3. Mechanical pushing and fluid shear stress increase 
[Ca2+]i in pancreatic acini. (A) Brightfield and live-cell imaging of 
pancreatic acini loaded with calcium 6-QF at time 0 and at time 
of maximum fluorescence 1:40 (min:s) after mechanical push-
ing. Scale bars: 10 μm. (B) Representative [Ca2+]i fluorescence 
tracings from single acinar cells in an acinus during the course of 
mechanical pushing with a blunt pipette. (C) Peak [Ca2+]i levels 
following mechanical pushing of acini from WT or Piezo1aci-KO 
mice. (D) Blunt pushing with a micropipette increased [Ca2+]i 
fluorescence only in the presence of extracellular Ca2+. Results 
represent data from 25–39 cells in 3 independent experiments. 
(E) Representative traces for relative fluorescence intensity 
(ΔF/F0) of calcium 6-QF–loaded cells are shown in response 
to applied shear stress at the forces shown in the graph. The 
duration of fluid flow shear stress was 30 seconds, as indicated 
by the orange bar. (F) The average peak [Ca2+]i intensity of Fmax/
F0 is shown for 41–54 cells. n = 3–4 independent experiments. (G 
and H) The relative fluorescence intensity (ΔF/F0) and average 
peak [Ca2+]i intensity of pancreatic acini in response to 12 dyne/
cm2 shear stress for 1 or 5 seconds. Data in H are averaged from 
14–41 cells. (I) Representative traces of relative fluorescence 
intensity (ΔF/F0) from calcium 6-QF–loaded WT and Piezo1-KO 
acinar cells before and after applying 12 dyne/cm2 shear stress 
for 30 seconds. (J) Average peak intensity of Fmax/F0 from the 
experiment depicted in I. Data represent a total of 53–67 cells 
and 3 independent experiments. Statistical analyses were 
performed using Student’s t test (D, H, and J) and 1-way ANOVA 
with Tukey’s multiple comparison (C and F). Data are shown as 
mean ± SEM. **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.
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Mechanical pushing– and shear stress–induced [Ca2+]i elevation 
in pancreatic acini. Mechanical activation of Piezo1 in acinar cells 
was demonstrated by applying a blunt glass pipette to the surface 
of acinar cells to a depth of 5 μm for 1 second. This stimulation 
produced a transient [Ca2+]i rise (Figure 3, A and B, and Supple-
mental Video 5) that was completely blocked by prior treatment 
of the cells with GsMTx4 (Figure 3C). In addition, mechanical 
pushing did not increase [Ca2+]i in acinar cells from Piezo1aci-KO 
mice (Figure 3C and Supplemental Video 6). Removal of external 
calcium blocked the mechanical pushing–mediated [Ca2+]i rise 
(Figure 3D). In order to apply physical force for a longer time, we 
used a fluid shear stress approach to avoid cell damage that might 
occur with repeated mechanical pushing and technical difficul-
ties. The fluid shear stress approach is similar to the situation in 
which high fluid pressure is injected into the pancreatic duct, as 
we have demonstrated (1), which has been used as a model for the 
clinical condition of excess filling of the pancreatic duct in humans 
during ERCP (7).

Mechanical shear stress is a physiological activator of Piezo1 in 
many tissues, including vascular endothelium (12, 13). To determine 
whether Piezo1 channels are responding to fluid shear stress in the 
pancreas, we evaluated changes in [Ca2+]i in freshly isolated pancre-
atic acini plated in a shear flow chamber (13). Following a period as 
brief as 30 seconds, the peak intensity of [Ca2+]i in pancreatic acini 
increased as greater shear stress forces were applied (Figure 3, E 
and F). Shear stresses of 4, 12, and 30 dyne/cm2 increased the peak 
[Ca2+]i by 1.5 ± 0.1–, 1.8 ± 0.1–, and 2.5 ± 0.1–fold, respectively (Figure 
3, E and F). The 12 and 30 dyne/cm2 stresses caused a sustained ele-
vation in [Ca2+]i and mimicked the [Ca2+]i pattern induced by Yoda1 
(25 μM and 50 μM) (Figure 3E and Figure 1, A and C). However, 
the lower shear stress force of 4 dyne/cm2 elicited only a transient 
[Ca2+]i rise (Figure 3E) without a prolonged [Ca2+]i elevation. Fur-
thermore, fluid shear stress force of 12 dyne/cm2 applied for 1 sec-
ond or 5 seconds was not sufficient to induce a sustained elevation 

in [Ca2+]i (Figure 3, G and H). The sustained [Ca2+]i elevation at 12 
dyne/cm2 did not occur in pancreatic acini from Piezo1aci-KO mice, 
although small transient [Ca2+]i peaks at regular intervals could be 
seen in some cells (Figure 3, I and J). We suspect that small transient 
spikes in [Ca2+]i occurring at regular intervals could be from low 
expression of other mechanically sensitive channels.

Fluid shear stress induces pathological events in pancreatic aci-
ni. To determine whether fluid shear stress–activated Piezo1 
facilitates mitochondrial depolarization, we monitored live-cell 
mitochondrial depolarization in pancreatic acini loaded with the 
mitochondrial sequestrant dye TMRE (200 nM) from WT and Pie-
zo1aci-KO mice. Fluid shear stress administered at 12 dyne/cm2 for 
30 seconds that caused a sustained elevation in [Ca2+]i decreased 
the TMRE intensity over time in WT pancreatic acini, but not in 
Piezo1aci-KO cells (Figure 4, A and B). In these experiments, flu-
id shear stress led to a sustained depolarization consistent with a 
state of mitochondrial dysfunction (Supplemental Video 7) (25, 
56). The mitochondrial potential of pancreatic acini with Piezo1 
deletion was not affected by these conditions of fluid shear stress 
(Figure 4B and Supplemental Video 7). These results demon-
strate that Piezo1 channels mediate fluid shear stress–induced 
mitochondrial depolarization. In contrast, mechanical pushing of 
acinar cells with a glass pipette only slightly depolarized the mito-
chondria in 20% of acinar cells, while the remainder were com-
pletely unaffected. Overall, it appears that pushing of pancreatic 
acinar cells once for 1 second was not sufficient to substantially 
depolarize the mitochondria (Supplemental Figure 4A).

Pancreatic enzyme activation in pancreatic acinar cells is a key 
pathological feature in pancreatitis. As reported here, the Piezo1 
agonist Yoda1 induces trypsinogen activation, which is the initial 
step in activation of other zymogens in the pancreas. To determine 
whether fluid shear stress mimics the Yoda1 effect and trypsin 
activation, pancreatic acinar cells were loaded with the trypsin 
activity–measuring probe BZiPAR. Pancreatic acini were then sub-

Figure 4. Fluid shear stress induces mitochondrial depolarization 
and trypsinogen activation in pancreatic acini. (A) Pancreatic acini 
were subjected to fluid shear force of 12 dyne/cm2, and TMRE dye 
fluorescence intensity of pancreatic acinar cells from WT and Pie-
zo1aci-KO mice were measured over 15 minutes. The duration of shear 
stress for 30 seconds is marked by the orange bar. FD represents the 
decrease in TMRE fluorescence over time, and F0 represents the base 
line TMRE intensity before fluid shear stress. (B) The mean average 
decrease in fluorescence intensity of TMRE over 15 minutes is shown. 
Flow is the lowest TMRE fluorescent intensity after fluid shear stress 
during imaging. The total number of acinar cells examined were as 
follows: control (without fluid shear stress) = 56; fluid shear stress 
on WT acini = 50; and fluid shear stress on Piezo1aci-KO acini = 91 and 
WT acini = 67. n = 3 independent experiments. (C) Traces represent 
live-cell trypsin activity upon fluid shear stress of 12 dyne/cm2 for 
30 seconds in acini from WT or Piezo1aci-KO mice. n = 3 experiments. 
(D) Peak fluorescence intensity of BZiPAR over 50 minutes from 3 
experiments; total number of acinar cells were as follows: WT = 28 
and Piezo1aci-KO = 36. Data are shown as the mean ± SEM. ****P ≤ 
0.0001. Statistical analyses were performed using Student’s t test 
(B) and 1-way ANOVA with Tukey’s multiple comparison (D).
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jected to fluid shear stress at 12 dyne/cm2 for 30 seconds. Trypsin 
activity monitored by live-cell imaging was detected after 10 min-
utes of fluid shear stress and gradually increased for up to 50 min-
utes (Figure 4C). An increase in BZiPAR dye (trypsin activity) was 
not observed in Piezo1aci-KO cells. In contrast, however, a short 
pulse of 5 seconds, instead of 30 seconds, at a force of 12 dyne/cm2 
did not trigger trypsin activation in WT acinar cells (Figure 4D). 
As we observed with mitochondrial depolarization, brief mechan-
ical pushing of pancreatic acinar cells was not sufficient to activate 
trypsin (Supplemental Figure 4B).

Piezo1 mediates TRPV4 channel activation in pancreatic acini. 
Although Piezo1 is a fast inactivating channel, fluid shear stress and 
Yoda1 caused a sustained elevation in [Ca2+]i, raising the possibility 
that other calcium entry channels or Piezo1-mediated downstream 
signaling pathways may exist. CRAC, which is expressed in pan-
creatic acinar cells (24), was one possibility; however, we observed 

that the CRAC inhibitor CM4620, which selectively inhibits the 
Orai channel, blocked the sustained elevation in [Ca2+]i produced 
by CCK, but not that induced by Yoda1 (Supplemental Figure 2). 
Therefore, it is unlikely that CRAC contributes to Piezo1-stimu-
lated Ca2+ entry. Since TRPV4 indirectly senses fluid shear stress, 
we sought to determine whether TRPV4 was expressed in pan-
creatic acinar cells. As shown in Figure 5, A and B, TRPV4 mRNA 
and protein were detected by quantitative reverse transcriptase 
PCR (RT-qPCR) and immunostaining, respectively. Moreover, 
TRPV4 was highly expressed in both mouse and human pancreat-
ic acini (Figure 5, A and B, and Supplemental Figure 5, A and C). 
Like mouse pancreatic acini, Piezo1 was also expressed in human 
pancreatic acini (Supplemental Figure 5B). In order to evaluate the 
function of TRPV4 in pancreatic acini, we used the TRPV4 chan-
nel agonist GSK10167790A (GSK101) and TRPV4 receptor antag-
onists HC067047 (HC067) and RN1734 (31, 32, 57). GSK101 (50 

Figure 5. TRPV4 is expressed in pancreatic acini, and Piezo1 induces TRPV4 activation. (A) mRNA (fold expression) of TRPV4 and Piezo1 in pancreatic 
acini relative to the housekeeping gene actb (n = 3–5 experiments). (B) Immunostaining of mouse pancreatic acini with a TRPV4 antibody (red). Nuclei 
(blue) were stained with Nunc blue. Scale bar: 10 μm. (C and D) Effects of the TRPV4 agonist GSK101 (50 nM) and GSK101 + the TRPV4 antagonist HC067 
(100 nM) or RN1734 (30 μM) on [Ca2+]i are shown. (C) A representative experiment shows the relative fluorescence intensity (ΔF/F0) of calcium dye over 
time and (D) the average peak [Ca2+]i intensity of pancreatic acini from 43 to 63 cells. (E and F) Arachidonic acid (20 μM) and 5′,6′-EET (5 μM) increased 
[Ca2+]i. The effects of 5′,6′-EET (5 μM) were blocked by HC067 (100 nM). (E) The relative fluorescence intensity of calcium dye and (F) average peak [Ca2+]i 
intensity of pancreatic acini from 40 to 54 cells are shown. (G, H, I, and J) The TRPV4 antagonist HC067 (1 μM) blocked the effects of shear stress (12 dyne/
cm2) and Yoda1 (25 μM) on the sustained [Ca2+]i responses. (G and I) Representative tracings of the relative fluorescence intensity of calcium dye over time 
with the different stimuli. (H and J) The average peak [Ca2+]i responses were calculated from 35 to 86 cells. (K and L) The shear stress– and Yoda-induced 
sustained increases in [Ca2+]i were not seen in pancreatic acini isolated from TRPV4-KO mice. (K) Representative traces demonstrate the effects of shear 
stress or Yoda1 on [Ca2+]i and (L) show the average peak [Ca2+]i intensity at different time intervals (from 45 to 47 cells). Statistical analyses were performed 
using Student’s t test. Data are shown as the mean ± SEM. *P ≤ 0.05; ***P ≤ 0.001; ****P ≤ 0.0001.
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Piezo1 elevates PLA2 activity. TRPV4 is activated by 5′,6′-EET 
generated through the PLA2-AA cytochrome P450 epoxygen-
ase-dependent pathway (42). If this pathway is responsible for 
Piezo1-initated TRPV4 channel activation, then Yoda1 should 
be able to induce PLA2 activation. To test this hypothesis, acinar 
cells were loaded with the fluorogenic PLA2 substrate 1, 2-Bis (4, 
4-difluoro-5, 7-dimethyl-4-Bora-3a, 4a-diaza-s-indacene-3-un-
decanoyl)-Sn-glycero-3-phosphocholine (Bis-BODIPY FL C11-
PC). Prior to Yoda1 stimulation, initial Bis-BODIPY FL C11-PC 
loaded pancreatic acini exhibited only faint fluorescence. How-
ever, application of Yoda1 markedly increased the intensity of 
the fluorogenic PLA2 substrate, indicating that Piezo1 is able 
to induce PLA2 activity (Figure 6, A and B, and Supplemental 
Video 8). The effects of Yoda1 were observed within 30 seconds 
of application and reached a plateau after 4 minutes (Figure 
6B). Yoda1 did not stimulate PLA2 activation in pancreatic aci-
ni from Piezo1aci-KO mice (Figure 6, B and C). To confirm that 
the increase in PLA2 activity was responsible for the Piezo1-in-
duced sustained [Ca2+]i levels, we tested the secretory and 
cytosolic PLA2 inhibitors YM26734 and AACOCF3, respec-
tively (58, 59). Together, YM26734 and AACOCF3 blocked 
the Yoda1-induced sustained [Ca2+]i elevation, indicating that 
Piezo1 induced PLA2, which was responsible for the subsequent 

nM) induced a significant increase in [Ca2+]i, which was inhibited 
by both HC067 (100 nM) and RN1734 (30 μM) (Figure 5, C and D).

To determine the mechanism for TRPV4 activation, we exam-
ined the PLA2 pathway by first testing the endogenous AA metab-
olite ligand 5′,6′-EET. Similarly to the TRPV4 agonist GSK101, AA 
and 5′,6′-EET induced significant increases in [Ca2+]i (Figure 5, E 
and F) that were inhibited by the TRPV4 antagonist HC067 (Fig-
ure 5, E and F). We next sought to determine whether the ability of 
shear stress to produce the sustained elevation in [Ca2+]i was due to 
TRPV4 by measuring [Ca2+]i following shear stress (12 dyne/ cm2 
for 30 seconds) in the presence of the TRPV4 antagonist HC067. 
HC067 (1 μM, the concentration used to completely inhibit TRPV4 
activity) (31) blocked the sustained [Ca2+]i elevation, leaving only 
transient alterations in [Ca2+]i (Figure 5, G and H). Like shear stress 
experiments, HC067 completely blocked the Yoda1-stimulated 
(25 μM) sustained increase in [Ca2+]i (Figure 5, I and J). Impor-
tantly, we discovered that neither Yoda1 nor fluid shear stress (12 
dyne/ cm2 for 30 seconds) caused a sustained increase [Ca2+]i in 
pancreatic acini isolated from TRPV4-KO mice (Figure 5, K and 
L). Together these findings indicate that Piezo1 directly senses 
fluid shear stress and initiates calcium influx. However, the activa-
tion of TRPV4 is responsible for the secondary sustained influx of 
calcium resulting in the sustained elevation in [Ca2+]i.

Figure 6. The Piezo1 agonist, Yoda1, induces activation of PLA2 activity. (A) Brightfield and fluorescence images of BODIPY FL C11-PC loaded pancreatic 
acini at time 0 and 3:30 minutes after Yoda1 (25 μM) application. Scale bar: 10 μm. (B) Traces represent the live-cell PLA2 activity upon Yoda1 (25 M) appli-
cation from 4 experiments. Representative tracings of acini from WT and Piezo1aci-KO mice are shown. The peak fluorescence intensity was calcu-
lated from the elapsed time at 5 to 6 minutes (blue bar). (C) Peak fluorescence intensity of BODIPY FL C11-PC dye measured at an elapsed time of 
5 to 6 minutes from 40 to 51 cells. (D and E) The traces and graph show the effects of Yoda1 (25 μM) on [Ca2+]i in pancreatic acini with or without treatment 
with the cytoplasmic PLA2 blocker AACOCF3 (30 μM) and secretory PLA2 blocker YM26734 (10 μM). YM26734 and AACOCF3 were preincubated 10 minutes 
before application of Yoda1. The transient calcium peaks were measured from signals obtained between 1 to 3 minutes (yellow bar), and sustained calcium 
peaks were measured from signals from 5.5 to 6.5 minutes (pink bar). Data represent the averages of 36–58 cells. Values were expressed as the mean ± 
SEM, and mean differences between multiple groups were analyzed by 1-way ANOVA with Tukey’s multiple comparison. *P ≤ 0.05; *** P ≤ 0.001; ****P ≤ 
0.0001. Scale bar: 10 μm.
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Figure 7. TRPV4-KO mice are 
protected against Yoda1- and 
pancreatic pressure–induced 
pancreatitis. (A) Photograph 
of the surgical approach used 
for injection of Yoda1 into the 
pancreatic duct is shown. Meth-
ylene blue dye was mixed with 
the injected solution to aid with 
pancreatic duct visualization. 
A total of 50 μL was injected 
over 10 minutes. The amount 
of Yoda1 injected into the pan-
creatic duct was 0.4 mg/kg. The 
boundary of the mouse pancreas 
is marked with yellow before 
and after Yoda1 infusion. After 
injection, methylene blue in the 
solution made the pancreas blue 
in color. Pancreatitis parame-
ters included edema (B), serum 
amylase (C), tissue MPO (D), and 
pancreatic histology score (E) 
in vehicle- and Yoda1-treated 
WT and TRPV4-KO mice (n = 
3–5). (F) Representative H&E-
stained images of the midregion 
of pancreas are shown. Scale 
bar: 100 μm. (G) Photograph 
of the partial PDL procedure is 
shown. Head and tail regions of 
pancreas are outlined in yellow 
and blue, respectively. PDL- 
induced pancreatitis parameters 
included edema (H), serum 
amylase (I), pancreatic MPO (J), 
and pancreas histology scores 
(K) of the sham and PDL WT and 
TRPV4-KO mice (n = 5–7). (L) 
Representative H&E images of 
the midregion of the pancreas 
are shown. Scale bar: 100 μm. 
Statistical analyses were per-
formed using 1-way ANOVA with 
Tukey’s multiple comparison. 
Data are shown as mean ± SEM. 
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 
0.001; ****P ≤ 0.0001.
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occlusion of the pancreatic duct (4–6) and this is thought to be a 
key factor in the development of gallstone-induced pancreatitis, 
which is one of the major causes of acute pancreatitis in humans. 
In this disease, impaction of a gallstone in the ampulla of Vater 
causes an abrupt increase in pancreatic duct pressure, leading to 
pancreatitis (61). In addition, mechanical force on the pancreas 
during trauma or pancreatic surgery may cause pancreatitis (7, 9). 
Finally, injection of fluid into the pancreatic duct at high pressure 
during ERCP is a well-known cause of pancreatitis (7, 62, 63). In 
each of these causes of pancreatitis, abnormal pressure on the 
pancreas has the potential to activate Piezo1. However, Piezo1 is 
also expressed in other tissues, where it mediates several physi-
ological processes, such as micturition, endothelial shear stress, 
embryogenesis, and vascular development (12, 13, 16, 17, 64). The 
question, therefore, arises of how activation of the Piezo1 channel 
leads to the pathological process of pancreatitis. In general, under 
normal physiological conditions, activation of Piezo1 channels is 
tightly regulated. Piezo1 channel function and transduction prop-
erties vary with stimulus frequency, waveform, and duration (65). 
We propose that overactivation of Piezo1 by persistent pressure or 
mechanical force in acinar cells produces downstream signaling 
events that disrupt normal cellular homeostasis, resulting in pre-
mature enzyme activation and ultimately pancreatitis. In the pan-
creas, disruption of calcium homeostasis is detrimental and leads 
to pancreatitis (23, 66).

Here, we demonstrate that either chemical (Yoda1) or physical 
(shear stress) activation of Piezo1 induced [Ca2+]i overload, caused 
mitochondrial dysfunction, and led to intrapancreatic trypsinogen 
activation. Persistent application of the Piezo1 agonist Yoda1 at 
doses of 25 M and 50 μM produced a sustained increase in [Ca2+]i 
in pancreatic acini. A similar increase in [Ca2+]i was seen when 
cells were subjected to fluid shear stress of more than 12 dyne/
cm2 for 30 seconds. However, mechanical pushing of the acinar 
cell surface up to 5 μm for 1 second caused only a transient rise in 
[Ca2+]i and did not induce trypsinogen activation. Similarly, fluid 
shear stress at low pressure (4 dyne/cm2) or for a short duration (1 
or 5 seconds) did not induce these changes. It has been established 
previously that a sustained elevation in [Ca2+]i in acinar cells is a 
prime cause of pancreatic injury (23, 66). Elevated [Ca2+]i in pan-
creatic acinar cells produced by persistent Yoda1 exposure resem-
bles that produced by supraphysiological doses of CCK, a well-
known agent for inducing experimental pancreatitis (66). Thus, it 
seems reasonable to attribute the ability of Yoda1 to induce pan-
creatitis to its prolonged effects on [Ca2+]i. It is possible that brief 
push stimulation activates a subset of Piezo1 and chemical activa-
tion acts on all channels, which mimics the prolonged high shear 
stress–mediated pathological effects.

We observed that removal of external Ca2+ abolished the 
Piezo1-mediated increase in [Ca2+]i and preincubating cells with 
the cell-permeable calcium chelator (BAPTA-AM) blocked the 
sustained increase in [Ca2+]i. Thus, it is possible that not only is 
external Ca2+ necessary for the Piezo1-mediated increase in [Ca2+]i, 
but also this increase is required for the opening of a Ca2+ entry 
pathway that contributes to the sustained elevation in [Ca2+]i. This 
is consistent with the observation that preincubating cells with 
BAPTA-AM protected acini from Piezo1-mediated cellular inju-
ry. Notably, Piezo1-mediated stimulation of [Ca2+]i differs from 

[Ca2+]i elevation (Figure 6, D and E). However, only the secreto-
ry PLA2 inhibitor effect was substantial and capable of blocking 
the sustained [Ca2+]i elevation (Figure 6, D and E). PKA and PKC 
inhibitors did not significantly affect Yoda-stimulated [Ca2+]i 
(Supplemental Figure 6).

TRPV4-KO mice are protected against pressure-induced pancre-
atitis. Sustained elevations in [Ca2+]i are sufficient to cause pancre-
atitis (60). Having demonstrated that Piezo1-initiated, sustained 
[Ca2+]i elevation requires TRPV4 activation, we proposed that 
TRPV4-KO mice could be protected from Piezo1-mediated pan-
creatitis. In order to selectively stimulate Piezo1 in the pancreas, 
Yoda1 (0.4 mg/kg) was infused into the pancreatic duct at a rate of 
5 μL/min (Figure 7A). This rate of infusion did not exceed the pan-
creatic duct pressure of 11 mmHg and is considered a low-pressure 
condition (1) that alone does not cause pancreatitis. As shown in 
Figure 7, B–F, Yoda1 infusion increased all pancreatitis parameters 
measured (pancreatic edema, serum amylase, pancreatic myelop-
eroxidase [MPO], and histological scoring) in WT mice. In con-
trast, the same dose of Yoda1 did not cause pancreatitis in TRPV4-
KO mice (Figure 7, B–F).

Having demonstrated that Piezo1 and CCK increase [Ca2+]i 
through separate mechanisms, we proposed that CCK would 
not trigger TRPV4 channel opening. In support of this idea, we 
found that the TRPV4 channel blocker HC067 did not affect the 
CCK-stimulated (1 nM) peak or sustained [Ca2+]i changes (Sup-
plemental Figure 7, A–C). It follows then that if CCK does not 
stimulate TRPV4 opening in acini, TRPV4-KO mice would not 
be protected from caerulein-induced pancreatitis. As expect-
ed, caerulein-induced pancreatitis was similar in both WT and 
TRPV4-KO mice (Supplemental Figure 7, D–H).

Piezo1 is responsible for pressure-induced pancreatitis (1). 
Experimentally, Piezo1aci-KO mice were protected against pan-
creatitis caused by high intrapancreatic duct pressure (1). If the 
pathological effects of Piezo1 activation are due to the down-
stream activation of TRPV4, we would expect that mice lacking 
TRPV4 would be protected against pressure-induced pancre-
atitis. We induced pancreatitis by ligating the tail region of the 
pancreas up to 24 hours (Figure 7G). In WT mice, pancreatic duct 
ligation (PDL) caused acute tissue injury that was reflected by an 
increase in all pancreatitis parameters. In contrast, TRPV4-KO 
mice were protected against duct ligation–induced pancreatitis 
(Figure 7, H–L). These findings confirm that TRPV4 plays a key 
role in pressure-induced pancreatitis.

Discussion
Acinar cells make up 90% of the pancreas and are notable for their 
abundant digestive enzymes that render the gland highly suscep-
tible to pancreatitis should enzymes become prematurely acti-
vated following organ damage. Intracellular enzyme activation is 
a hallmark of pancreatitis and is believed to play a central role in 
disease pathogenesis. Recently, we demonstrated that pressure 
activation of Piezo1 channels in pancreatic acinar cells is respon-
sible for pressure-induced pancreatitis (1). Prior to the identifica-
tion of Piezo1 in acinar cells, it was not known how the pancreas 
senses pressure, although a number of pathological situations 
indicate that the gland is exquisitely sensitive to pressure-induced 
injury. For example, intrapancreatic duct pressure is increased by 
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that accelerate enzyme activity, which initiates the arachidonic 
pathway and TRPV4 channel activation. In mouse pancreatic aci-
nar cells, the Piezo1 agonist Yoda1 increased PLA2 activity and 
caused a sustained elevation in [Ca2+]i, an effect that was inhib-
ited by a PLA2 inhibitor. Various reports indicate that TRPV4 is 
sensitive to mechanical stimuli, such as osmotic pressure, shear 
stress, and mechanical stretching (31–37). However, it was unclear 
how mechanical stimuli actually activate the TRPV4 channel. 
The current findings indicate that Piezo1 stimulation of PLA2 and 
subsequent activation of TRPV4 could be a mechanism by which 
TRPV4 channels respond to mechanical force.

Supramaximal doses of CCK secretagogue block apical secre-
tion and cause intracellular vacuolization, enzyme activation, and 
enzyme release from the basolateral surface of the cell (81, 82). In 
the present study, we observed that Yoda1 induced the release of 
vesicles from the basolateral surface, indicating a possible patho-
logical situation.

We did not observe any significant effects of PKA and PKC 
inhibitors on Yoda1-mediated TRPV4 activation. In other cells, 
such as HEK293 cells or human coronary artery endothelial 
cells, PKA and PKC can directly phosphorylate TRPV4 and mod-
ify channel activity. Our findings suggest that this pathway is not 
required for channel activation.

The current study demonstrates that Piezo1 initiates the 
pressure-induced calcium signal, causing TRPV4 activation, 
but the pathological events that occur in the acinar cell require 
TRPV4-mediated calcium influx, which is responsible for the sus-
tained phase of calcium elevation that leads to pancreatitis. Con-
sistent with this pathological sequence of events, TRPV4-KO mice 
were protected from Yoda1-induced pancreatitis.

To mimic pancreatitis caused by pancreatic duct obstruction 
(e.g., gallstones), we used a mouse model of pancreatitis by ligat-
ing the tail region of the pancreas for 24 hours (83). In this model, 
we observed that TRPV4-KO mice were substantially protected. 
Hence, a TRPV4 channel blocker could be a possible treatment for 
pancreatitis where pressure is encountered.

Our findings suggest that activation of Piezo1 in the absence of 
TRPV4 is not sufficient for inducing pathological calcium signaling. 
However, when coexpressed and linked by intracellular signaling 
pathways, TRPV4 may appear to be pressure sensitive. For example, 
Piezo1 and TRPV4 channels are expressed in endothelial cells, and 
previous reports have indicated that high pulmonary venous pres-
sure induces Ca2+ influx into endothelial cells via TRPV4 channels, 
resulting in increased vascular permeability, which is a major cause 
of mortality in heart failure patients (33). Although unrecognized at 
the time, this process may be linked to Piezo1, which appeared to 
sense high vascular pressures at the lung endothelial surface and 
account for vascular hyperpermeability and pulmonary edema 
(30). Thus, it appears that both Piezo1 and TRPV4 are responsible 
for this vascular hyperpermeability, and our findings suggest that 
they may be linked. We hypothesize that Piezo1 sensing of high 
vascular pressure initiates a Ca2+-signaling pathway that triggers 
the activation of TRPV4. TRPV4 activation would then cause a sec-
ondary, sustained Ca2+ influx that would lead to vascular hyperper-
meability. The extent of TRPV4-induced Ca2+ entry would be influ-
enced by other factors, including the level of TRPV4 expression, the 
degree and duration of pressure, and, if identical to the pancreas, 

stimulation through the the CCK-mediated pathway. The Piezo1 
pathway requires external Ca2+ to initiate the process, whereas 
CCK stimulation begins via the release of Ca2+ from intracellular 
ER stores (23, 67).

Under physiological conditions, the pancreatic secretagogues 
acetylcholine and CCK stimulate [Ca2+]i in a spatiotemporal man-
ner that is required for ATP production, initiation of exocytosis, 
and nuclear signaling processes (68). However, supraphysiologi-
cal CCK stimulation and excess ethanol, bile, and toxins induce a 
sustained elevation in [Ca2+]i in pancreatic acinar cells that cause 
acute pancreatitis (28, 69–72). This sustained elevation in [Ca2+]i 
mediates mitochondrial dysfunction, premature zymogen acti-
vation, vacuolization, and necrosis (73). We observed that both 
Yoda1 and fluid shear stress induced mitochondrial depolarization 
and trypsin activation in pancreatic acinar cells. Transient depo-
larization of mitochondria following a rise in [Ca2+]i is associated 
with normal cellular ATP production. However, [Ca2+]i overload 
in acinar cells induced by bile and ethanol (27, 28, 71, 74) opens 
the MPTP, collapses the mitochondrial membrane potential (ψm) 
required for ATP synthesis (75–77), and ultimately results in cell 
death. By chelating intracellular-free Ca2+, we prevented Yoda1-in-
duced mitochondrial depolarization and cell death. It has been 
observed previously that intracellular calcium chelation prevents 
zymogen activation (52, 78) and protects against acute pancreati-
tis in vivo (79). We observed that Piezo1-mediated mitochondrial 
depolarization preceded trypsin activation following either Yoda1 
treatment or shear stress and is ultimately responsible for pres-
sure-induced pancreatitis.

Piezo1 is a fast inactivating channel with single-channel con-
ductance of approximately 22 pS (inward current), which is low-
er than the TRPV4 ion channel of approximately 60 pS (10, 80). 
Piezo1 inactivation kinetics are independent of stimulus inten-
sity (10). If no other type of channel is present in the cell except 
Piezo1, the calcium rise will be transient rather than sustained due 
to fast inactivation kinetics. This suggests that the Piezo1-induced 
sustained elevation in [Ca2+]i produced by Yoda1 or shear stress 
requires an extra calcium entry pathway. We, therefore, sought 
other potential channels that could be linked to Piezo1 activity and 
discovered that TRPV4 is expressed in both mouse and human 
pancreatic acini.

Initially, we thought that mechanical activation of Piezo1 and 
TRPV4 were independent processes. Even though activation of 
Piezo1 could produce a transient increase in [Ca2+]i and TRPV4 
could produce more sustained elevation of [Ca2+]i by virtue of its 
slow inactivation kinetics and considerably higher single channel 
conductance, it was not clear whether the 2 processes were linked. 
Remarkably, the TRPV4 antagonist HC067 completely blocked 
the sustained phase of calcium elevation induced by Yoda1 and 
shear stress. This provided the hint that Piezo1 regulates TRPV4 
channel activation. The results were confirmed in experiments 
from TRPV4-KO mice when both Yoda1 and prolonged shear 
stress produced only transient elevation in [Ca2+]i. Low shear 
stress for 30 seconds and high shear stress for 5 seconds were not 
sufficient to induce a sustained calcium rise and did not activate 
TRPV4. The reason could be that the brief force caused only a 
subset of Piezo1 channel openings and was insufficient to activate 
PLA2. In the cell, PLA2 is activated upon binding to calcium ions 
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thin-layered, Matrigel-coated, glass-bottom culture plate with DMEM/
F12 and 10% FBS media and placed in a CO2 incubator for 1 hour at 37°C. 
After 1 hour, the acini were incubated with TMRE (200 nM) in the bath 
buffer containing 140 mM NaCl, 4.7 mM KCl, 2.0 CaCl2, 1 mM MgCl2, 10 
mM HEPES, and 10 mM glucose (pH adjusted to 7.4 with NaOH) for 30 
minutes. The TMRE dye was washed and replaced with fresh bath buf-
fer. The images were captured with a Zeiss Axio observer Z1 microscope 
with MetaMorph software (Molecular Devices) at intervals of 600 ms. 
TMRE was excited at 540–600 nm and emission collected at 585–675 
nm. Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), 
which uncouples the oxidative phosphorylation process and depolarizes 
mitochondria, was used as a positive control (52, 53). A maximum of 2 
mitochondrial puncta were taken per acinar cell (53).

Trypsinogen activation. To visualize Piezo1-induced trypsinogen 
activation, acini were loaded with active trypsin enzyme substrate 
BZiPAR (10 μM) (52, 55). Na-HEPES buffer with 2 mM Ca2+ was used 
during imaging. A Zeiss Axio observer Z1 with a high-sensitivity EMC-
CD camera with a ×40/0.75 EC-Plan-NeoFluar DIC objective was 
used to capture the Z-stack images with stack thickness of 3 μm at an 
interval of 12 seconds. The BZiPAR fluorescent wavelength Ex/Em 
was 498/521 nm. BZiPAR was excited at 470–510 nm and emission 
collected at 495–550 nm. The captured images were analyzed with 
MetaMorph software (Molecular Devices).

Cell death assays. The viability of pancreatic acini with Yoda1 and 
CCK treatments was analyzed using the Live/Dead Cell Imaging Kit 
(Thermo Fisher Scientific, catalog R37601) (88) or the LDH Release 
Assay Kit (Promega, catalog G1780) (1).

PLA2 activity. The fluorogenic PLA2 substrate (Bis-BODIPY FL C11-
PC) (Thermo Fisher Scientific; B7701) was used to monitor PLA2 activ-
ity in living cells. The pancreatic acini were incubated with Bis-BODIPY 
FL C11-PC in HBSS buffer with 2 mM Ca2+ for 30 minutes. HBSS buffer 
with 2 mM Ca2+ was used during imaging. A Zeiss Axio observer Z1 with 
a high-sensitivity EMCCD camera with a ×40/0.75 EC-Plan-NeoFluar 
DIC objective was used to capture the Z-stack images with stack thick-
ness of 4 μm at an interval of 10 seconds with 480 nm excitation and 
525-nm emission filter. The captured images were analyzed with Meta-
Morph software (Molecular Devices).

Immunostaining. Pancreatic acini were incubated with a rabbit 
anti-TRPV4 antiserum (Alomone; ACC-034; 1:250) or with a rab-
bit anti-Piezo1 antiserum (Alomone; APC-087; 1:300) overnight 
at 2°C–8°C. The signals from TRPV4 and Piezo1 immunostaining 
were amplified by the tyramide signal amplification method using 
a kit (Life Technologies; T20924) following the manufacturer’s 
instructions. The nuclei were stained with Nunc blue (Invitrogen; 
R376060). All staining images were taken with a Zeiss Axio observer 
Z1 with a ×20 objective or a ×63 oil-immersion objective.

In vivo pancreatitis models. Laparotomy surgery was performed 
both in pancreatic partial duct ligation– and retrograde pancreat-
ic duct infusion–mediated pancreatitis experiments as previously 
described (1). Yoda1 at a dose of 0.4 mg/kg in 50 μL 1.1% dimethylsulf-
oxide, 4.8% ethanol, and 94.1% buffered saline was injected as previ-
ously described (1). In Yoda1-mediated pancreatitis, the midportion of 
the pancreas (about 100–125 mg) was carefully excised and used for 
biochemical assays and histological staining. Histological scoring was 
evaluated from the entire section. Partial PDL was performed as pre-
viously described (89, 90). Using a stereo microscope, the tail region 
of the pancreas was visualized, and the main pancreatic duct was ligat-

the appropriate level of PLA2 activity. Thus, our findings may rep-
resent a more generalized process in which TRPV4 converts Piezo1 
pressure sensing into a pathological event.

Methods
Animals. Targeted deletion of Piezo1 in pancreatic acinar cells was 
accomplished as follows. Piezo1fl/fl mice were a gift from A. Patapoutian 
(Department of Neuroscience, Scripps Research, La Jolla, California, 
USA) (84) and were crossed with ptf1atm2 (cre/ESR1) Cvw /J mice (The Jackson 
Laboratory) to generate the mouse line ptf1aCreERTM; piezo1fl/fl. Piezo1fl/fl 
mice were used as WT, and ptf1aCreERTM; piezo1fl/fl mice at the age of 5 to 
7 weeks were subjected to 1 mg of tamoxifen (MilliporeSigma, T5648) 
injected intraperitoneally for 5 consecutive days. After tamoxifen 
induction, the ptf1aCreERTM; piezo1fl/fl mice expressed a truncated Piezo1 
specific to pancreatic acinar cells and are referred to as Piezo1aci-KO 
mice. Eight days after the last tamoxifen injection, mice were used 
in experiments, and each time a small piece of pancreas was used for 
genotyping. Mice (both male and female) aged 7 to 12 weeks were used 
in the experiments. Piezo1fl/fl mice (8 to 12 weeks of age) on a C57BL/6J 
background (1) were used as WT mice, and ptf1aCreERTM; piezo1fl/fl mice 
after tamoxifen injection were used as Piezo1aci-KO mice for experi-
ments with the Piezo1 agonist, Yoda1, and shear stress. C57BL/6J mice 
(8 to 14 weeks old) were used as WT mice, and mice with the trpv4−/− 
gene deletion (referred to as TRPV4-KO), provided in-house (85), 
backcrossed on a C57BL/6J background, were used for both Yoda1 and 
partial duct ligation–mediated pancreatitis experiments. For in vivo 
experiments with Yoda1, WT mice were also injected with tamoxifen. 
Mice were housed under standard 12-hour light/12-hour dark periods.

Pancreatic acini and acinar cell preparations. Mouse pancreatic 
acini were isolated using the standard collagenase digestion proto-
col, as previously described (1, 86, 87). Isolated acini were plated on 
a thin-layered, Matrigel-coated, glass-bottom, culture plate (MatTek, 
P35G-0-14-C). Freshly isolated acini were used in each experiment.

Shear stress assays. Parallel-plate fluid flow chambers (μ-Slide I 0.4 
Luer, and μ-Slide I 0.2 Luer from Ibidi GmbH) were used to measure 
the shear stress–induced changes in intracellular calcium, mitochon-
drial depolarization, and trypsin activation (13). The constant flow rate 
with shear stress (τ) was determined as follows: τ = η × 104.7.6 φ for 
μ-Slide I 0.4 Luer and τ = η × 330.4 φ for μ-Slide I 0.2 Luer, where η = 
viscosity of the medium and φ = flow rate (according to the manufac-
turer’s instructions, Ibidi).

Mechanical pushing. A borosilicate glass pipette (Sutter Instru-
ment) was pulled using a pipette puller P-87 (Sutter Instruments) 
and made blunt with an MF-900 Microforge (Narishige). Acini were 
pushed once with a 2- to 3-μm tip blunt pipette to 5 μm for 1 second 
using a micromanipulator (World Precision Instruments).

Calcium imaging. Calcium imaging in pancreatic acini was per-
formed as described previously (1). The chemicals used in calcium 
imaging experiments included the following: Yoda1 (Tocris; 5586), 
GsMTx4 (Abcam; ab141871), 5′,6′-EET (Santa Cruz Biotechnology; 
sc-221066), AA (MilliporeSigma; A3611), HC067047 (Tocris; 4100), 
GSK1016790A (MilliporeSigma; G0798), RN1734 (Tocris; 3746), 
AACOCF3 (Tocris; 1462), YM26734 (Tocris; 2522), GF109203X (Toc-
ris; 0741), and CCK8 (Sigma-Aldrich).

Mitochondrial depolarization. Live-cell mitochondrial depolarization 
was analyzed according to a previously described protocol (52) using 
the mitochondrial labeling dye TMRE. Isolated acini were plated on a 
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differences between multiple groups were analyzed by 1-way ANOVA 
with Tukey’s multiple comparison posttest (GraphPad Prism 8). P val-
ues of less than 0.05 were considered significant.

Study approval. Experimental protocols and studies were per-
formed with approval from the Institutional Animal Care and Use 
Committee of Duke University.
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ed carefully with 6-0 Prolene suture without damaging the left portal 
vein that separates the splenic lobe and gastroduodenal part of the 
pancreas. Any mice suffering damage to any underlying blood vessels 
were excluded from the experiment. The pancreas was examined 24 
hours after ligation. A 100- to 125-g portion of the tail region of the 
pancreas was used for biochemical assays and histological staining. 
Mice were subjected to caerulein-induced pancreatitis by intraperito-
neal injection of caerulein (50 μg/kg) (Tocris; 6264) every hour for a 
total of 6 injections as previously described (85).

Blood amylase assay. Serum amylase concentration was mea-
sured by a colorimetric method after reaction with substrate using 
the Phadebas Amylase Test Tablet (Magle Life Sciences) and the 
Tecan-infinite M200 Pro plate reader (1).

MPO assay. MPO was measured using previously described meth-
ods with modifications (1). To calculate the mU of MPO/mg of protein, 
the protein concentrations of the supernatants were measured using 
the Micro BCA Protein Assay Kit (Thermo Fisher Scientific; 23235).

H&E staining. In Yoda1-mediated pancreatitis, the body region 
of the pancreas was used for H&E staining (1), and in partial duct 
ligation–mediated pancreatitis, the tail region of the pancreas was 
used. The histological score was calculated from the pathological 
parameters, e.g., tissue edema, neutrophil infiltration, necrosis, and 
hemorrhage, with a minimum to severe scoring range of 0–3, 0–3, 
0–7, and 0–7, respectively (91). The scores from all parameters were 
added to obtain a total histological score.

RT-PCR. RNAs were isolated using the RiboPure Kit (Invitrogen; 
AM1924), followed by DNase I digestion (Invitrogen; AM1906) (1).

Statistics. Results are expressed as mean ± SEM. Mean differences 
between 2 groups were analyzed by 2-tailed Student’s t test, and mean 
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