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Preclinical evaluation of patient-derived cells shows 
promise for Parkinson’s disease
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Cell transplantation for 
Parkinson’s disease
Parkinson’s disease (PD) is a neurodegener-
ative disease in which the number of dopa-
minergic (DA) neurons that project from the 
midbrain substantia nigra to the striatum 
progressively decrease. As a result, patients 
mainly exhibit motor dysfunctions, such as 
bradykinesia (slowed movement), rigidity, 
and tremors. To replace the lost DA neurons, 
the transplantation of fetal midbrain, which 
contains DA neurons, has been attempted 
since 1987. A number of clinical cases have 
proved that this treatment can improve 
patient symptoms (1). Moreover, positive 
effects for over 10 years have been reported 
(2). Now, a new clinical trial is ongoing in 
Europe that seeks to optimize the treatment 
protocols of this strategy (3). However, there 
are several issues regarding fetal-based 
treatment, including ethical concerns using 
fetal tissue, difficulty in obtaining a suffi-
cient amount of fetal brain tissue, and con-
tamination of serotonergic neurons, which 
may cause dyskinesia (involuntary move-
ment). Although the efficacy of fetal cell 
transplantation has been demonstrated, it 
is not yet admitted as a standard treatment.

Embryonic stem cells (ESCs) and 
induced pluripotent stem cells (iPSCs)
are considered alternative cell sources 
for DA neurons because both can differ-
entiate into somatic cells of every organ. 
ESCs are derived from the inner cell mass 
of a blastocyst, which defines the early 
stage preimplantation embryo (4). On 
the other hand, iPSCs are induced from 
somatic cells, such as skin fibroblasts 
or blood cells, by introducing repro-
gramming factors (5). As a result, iPSCs 
result in fewer ethical problems because 
they avoid embryo destruction and can 
potentially allow autologous transplan-
tation by using the patient’s own cells, in 
which case there is no need for immuno-
suppression. To take advantage of this, 
the team led by Kim developed an iPSC 
induction and differentiation protocol 
to treat PD patients by autologous trans-
plantation (6).

Improving methods to generate 
DA neurons from iPSCs
The process of autologous transplantation 
can be divided into two parts. One part 
establishes the iPSC line and the corre-

sponding quality checks. The other induc-
es DA neurons from the iPSCs and again, 
checks the final product for quality, safety, 
and efficacy. In the current study, the Kim 
group made several improvements to both 
parts of this process (6).

In the original iPSC-reprogramming 
method, four transcriptional factors (c-Myc, 
Oct4, Sox2, Klf4) were introduced into 
dermal fibroblasts by retroviral vectors (7). 
Notably, the protooncogene c-Myc risks 
tumorigenesis, so it has since been replaced 
by L-Myc in the reprogramming method 
(8). Song et al. found that the addition of 
two metabolism-modulating microRNAs 
(miR-302s and miR-200c) facilitated the 
generation of human iPSCs in terms of effi-
cient colony formation and the expression 
of pluripotent markers in each colony (6). 
Another problem with the original design 
was retroviral integration, which sometimes 
caused genomic mutations. This risk was 
avoided by using integration-free meth-
ods via plasmid vectors (9). Song et al. also 
used plasmid vectors and confirmed that 
the established iPSCs were free of integrat-
ed plasmid DNAs. By using this new proto-
col, they succeeded in establishing human 
iPSCs that contained no somatic mutations 
causally implicated in cancer (6).

The next improvement was related to 
the culture conditions. Song et al. found 
that DA induction by neurosphere culture 
is highly variable between experiments 
(10–12) and thus investigated a monolayer 
culture (6). After comparing several cell 
densities, they reached the conclusion that 
the spotting method was best, in which 
iPSCs are initially attached only to desig-
nated areas by precoating circular areas (or 
“spots”) of 5 mm diameter using Matrigel 
on the cross points of a 2 × 2 cm2 grid. By 
this technique, they could significantly 
reduce cell death and obtain a higher yield 
of DA neurons (6).

Finally, Song et al. modified the differ-
entiation protocol to induce DA neurons. 
The differentiation of pluripotent stem 
cells into various somatic cells is mainly  
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Parkinson’s disease (PD) is a neurodegenerative disease caused by the 
progressive loss of dopaminergic (DA) neurons in the midbrain projecting 
to the striatum, which leads to motor dysfunctions, such as bradykinesia 
(slowed movement), rigidity, and tremors. To replace the lost cells, the 
transplantation of DA neurons derived from embryonic stem cells or 
induced pluripotent stem cells (iPSCs) has been considered. In this issue 
of the JCI, Song et al. report on their development of an iPSC induction and 
differentiation protocol that can promote the realization of autologous 
transplantation to treat PD patients with their own cells.
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cell transplantation to PD patients, an 
accumulation of α-synuclein in the grafted 
cells was reported (2). The same obser-
vations should be made for iPSC studies, 
especially in the cases of autologous trans-
plantation. Therefore, before any firm 
conclusions can be made about autologous 
treatments of PD, clinical observation over 
a long time period is needed.
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Although details remain unknown, the 
new protocol presented by Song et al. will 
contribute to reducing the cost and time 
of generating DA neurons from somatic 
cells (6). Especially in autologous trans-
plantations, the efficiency of obtaining 
cells of good quality is critical. According 
to the current study, the authors analyzed 
five independent iPSC lines derived from 
a sporadic PD patient by karyotyping, 
quantitative real-time PCR (qRT-PCR), 
and whole-exome sequencing and found 
that four clones out of five were free of 
integrated plasmid DNAs and contained 
no somatic mutations causally implicat-
ed in cancer. Considering that the estab-
lishment of iPSC lines and these genomic 
evaluations are time- and cost-consuming, 
this efficiency is remarkable. At the same 
time, however, the authors made no state-
ment about the genomic stability during 
differentiation. It is possible that muta-
tions may occur during differentiation, 
which could prohibit the transplantation. 
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about the interpretation of the genomic 
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Finally, Song et al. performed in vivo 
studies to confirm the efficacy of their 
DA neurons induced from sporadic PD 
patient–derived iPSCs and found that the 
cells improved the behaviors of 6-OHDA–
lesioned rats (6). Previously, Kikuchi et 
al. reported that DA neurons induced 
from sporadic PD patient–derived iPSCs 
improved the behaviors of MPTP-treated 
nonhuman primates (21). Although there 
are several reports that iPSCs derived from 
familial PD patients cannot give rise to 
healthy DA neurons, it seems that DA neu-
rons derived from sporadic PD patients 
can function in the brain. Nevertheless, 
there is concern that PD patient–derived 
DA neurons might be more vulnerable to 
the pathology of PD than neurons from 
healthy individuals. In the cases of fetal 

controlled by bone morphogenic pro-
tein (BMP), TGF/activin/nodal and Wnt 
signals (6, 13). In order to induce neural 
cells, it is important to inhibit both BMP 
and TGF/activin/nodal signals. Because 
this method inhibits the SMAD1/5/8 and 
SMAD2/3 intracellular pathways, it is 
called dual SMAD inhibition (10). In addi-
tion to the above, to generate DA neurons, 
the ventral midbrain is induced by mod-
erately activating Wnt signals and ven-
tralizing with Sonic hedgehog (Shh) (11, 
12, 14). The combination of these condi-
tions results in a highly efficient method 
to induce DA neurons, but the possibili-
ty of residual undifferentiated cells with 
neoplastic potential remains (15, 16). One 
possible solution to avoid this risk is the 
removal of unwanted cells by sorting DA 
neurons with antibodies against CORIN 
(17), a marker for floor plate, or ALCAM 
(18), a marker for vascular endothelial cells 
in the central nervous system. Song et al. 
took another path. Based on the previous 
findings that BIRC5 (encoding survivin) is 
highly expressed in human ESCs/iPSCs 
compared with somatic cells (19), they 
hypothesized that the chemically inhibit-
ing survivin would selectively eliminate 
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Among survivin inhibitors, they chose the 
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Future directions
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plantation relates to the immune response 
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immune response to the autologous trans-
plantation of iPSC-derived neural cells in 
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there is no need for immunosuppressant 
drugs upon transplantation, which avoids 
adverse effects such as liver or kidney 
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addition, there is minimal risk of transmit-
ting pathogens from donor tissue. How-
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and evaluating the induced cells for each 
patient. At the moment, these processes 
are costly, laborious, and time-consum-
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