
Introduction
Expression of immunoglobulin heavy chains (Igµ) in
pro-B cells induces pre-B cell development by assembly
of a pre-B cell receptor (pre-BCR), which is a complex of
Igµ, surrogate light chains (ψL), and two signal-trans-
ducing proteins, Igα and Igβ (1–6). Pre-BCR expression
induces proliferative expansion and downregulation of
recombinase-activating genes (RAG1 and RAG2), there-
by ensuring allelic exclusion while selecting clones of
cells with productive VDJH rearrangements (7). Muta-
tions in mIgµ, ψL, or Igα/Igβ genes that disrupt pre-BCR
assembly impede B cell development at the pro-B cell
stage in mice and humans (8–15).

Pre-BCR assembly is dependent on interaction
between VH variable regions and ψL, and in the mouse
the IgH repertoire is selected in part on the basis of this
interaction (16–18). It has been proposed that VH

domains that pair well with ψL are positively selected
at the pre-B cell stage, whereas VH domains that pair
poorly with ψL are not. However, selection differs in
mouse fetal and adult B cell development such that VHs
that are counterselected in the adult are prominent in
the fetal repertoire (18).

In contrast to mice, there is no apparent difference in
the VH repertoire between pro-B, pre-B, or fetal B cells
and adult mature B cells in the human (19–30). How-
ever, there is selection for IgH genes during human 
B cell development as determined by the length of the

third complementary determining region (CDR3). Pro-
and pre-B cells from adult bone marrow have longer
CDR3s than mature B cells (31–33).

Following successful IgH assembly and pre-BCR
expression, V(D)J recombination is targeted to the light
chain (IgL) genes (34–38). Those cells that produce in-
frame IgL chains test their newly synthesized Igs for self-
reactivity. In the mouse, B cells that produce self-reac-
tive receptors are either deleted or arrested in
development and undergo receptor editing (39-45). In
contrast, less is known about receptor selection and the
role of the BCR in regulating B cell development in
humans. Here we report on the role of the BCR in Ig
repertoire selection in two patients with different muta-
tions in the Igµ gene that impairs BCR assembly.

Methods
Patient samples and cell preparation. Bone marrow samples
were obtained from two Igµ-deficient patients with
either a homozygous cytidine insertion in the Igµ gene
(Igµ–/–) or with a homozygous deletion of the Igµ locus
(Igµ∆) (see Results) (13, 46, 47) (C. Schiff, unpublished
observations). Samples were obtained when the Igµ∆

patient was 2 years old, the Igµ–/– patient was 4 years
old, and her Igµ+/– brother (control) was 9 months old.
The parents gave informed consent for this study. Bone
marrow mononuclear cells were isolated by Ficoll gra-
dients and CD34+CD19+ pro-B cells were sorted on a
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FACSVantage after labeling with FITC anti-CD34 and
phycoerythrin anti-CD19 mAb’s (Beckman Coulter,
Brea, California, USA).

RNA and RT-PCR. Total RNA was extracted from
104–105 purified cells using TRIzol Reagent (Life
Technologies Inc., Rockville, Maryland, USA). RNA
was reverse transcribed with Superscript II (Life
Technologies Inc.) according to the manufacturer’s
instructions. For RT-PCR reactions, cDNA was
amplified for 25 (actin), 35 (VH-Cµ), or 38 (Vκ-Cκ)
cycles of 30 seconds at 94°C, 30 seconds at 60°C,
and 30 seconds at 72°C, or for 40 cycles (Vλ-Cλ) of 30
seconds at 94°C, 30 seconds at 55°C, and 30 seconds
at 72°C, with a final 10-minute extension at 72°C
using Hot Star Taq DNA polymerase (QIAGEN Inc.,
Valencia, California, USA) and the following
primers: Vλ consensus sense, 5′GGG(G/A)TC(T/C)CT-
GA(C/T/G)CG(A/C/G)TTCTCTGG(C/G)TCC3′; Cλ anti-
sense, 5′CACAC(T/C)AGTGTGGCCTTGTTGGCTTG3′.
VH1, VH3, VH4, Cµ, Vκ consensus and Cκ primers were
described previously (48, 49). RT-PCR products were
analyzed on 2% agarose gels and visualized by adding
0.3 pmol of 32PdATP to the PCR reaction.

Cloning and sequencing. PCR products were gel-purified
(Qiaquick; QIAGEN Inc.) and cloned into TA vectors
(Invitrogen, Carlsbad, California, USA). Double-
stranded DNA sequences were obtained using anti-
sense Cµ, Cκ, or Cλ primers and Dye Terminator Cycle
Sequencing (Applied Biosystems, Foster City, Califor-
nia, USA). Sequences were analyzed by comparison
with Ig basic alignment search tool (BLAST). IgH
CDR3 length was determined by counting amino acid
residues between positions 94 and 102 (conserved tryp-
tophan in all JH segments) and D segments were iden-
tified following the criteria of Corbett et al. (50). Igκ

and Igλ CDR3 length included amino acids between
conserved cystein 88 and the phenylalanine residue
embedded in Jκ or Jλ (51). Nontemplate (N) nucleotides
(52) found at Vκ-Jκ or Vλ-Jλ junctions were counted
while template-dependent palindromic (P) nucleotides
(53) were excluded. Differences in gene distribution
were analyzed with χ2 tests (Cochran-Mantel-Haenszel
test) adjusted by the Bonferroni method for multiple
testing, and they were considered significant when 
P values were less than or equal to 0.05.

Results
IgH and IgL transcription is independent of Igµ expression.
Two patients with agammaglobulinemia and IgH
mutations were studied. Igµ–/– has a cytidine insertion
in the CH1 exon of the Igµ gene that leads to a
frameshift and the inability to produce Igµ products
(13, 46, 47). Igµ∆ has a deletion in the Ig locus from 3′
of the diversity (D) region to Igγ2, with all junction (J)
segments and Igµ, Igδ, Igγ3, and Igγ1 genes missing (C.
Schiff, unpublished observations).

Flow cytometric analysis of bone marrow from Igµ–/–

and Igµ∆ patients revealed that in both cases B cell dif-
ferentiation was arrested at the CD34+CD19+ pro-B
cell stage (Figure 1a) (12, 13, 46, 47). To characterize
Ig expression in Igµ-deficient pro-B cells, transcripts
for heavy and light chain genes were amplified by
semiquantitative RT-PCR from sorted CD34+CD19+

pro-B cells from Igµ–/–, Igµ∆, and a control sibling (Fig-
ure 1). As expected, VH-Cµ mRNA was missing in Igµ∆

pro-B cells where the entire Igµ locus was deleted (Fig-
ure 1b). In contrast, Igµ–/– and control pro-B cells
showed similar levels of VH-Cµ transcripts revealing
that the absence of Igµ protein does not affect the Igµ
gene expression in humans (Figure 1b).
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Figure 1
Immunoglobulin rearrangements in human
pro-B cells. (a) B cell precursors in sibling
control (left), Igµ–/– (middle), and Igµ∆ (right)
bone marrow. CD34+CD19+ pro-B cells from
control and both Igµ-deficient patients were
sorted as gated. (b) Heavy and light chain Ig
gene expression in human pro-B cells. RNA
from FACS-sorted CD34+CD19+ pro-B cells
from both Igµ-deficient patients and control
was analyzed by semiquantitative RT-PCR
using 5′ consensus VH, Vκ, or Vλ and 3′ Cµ, Cκ,
or Cλ primers, respectively, and visualized by
32PdATP incorporation. “Neg.” denotes a
negative control without cDNA for RT-PCR
reactions. Actin RT-PCR was used as mRNA
loading control. Serial fivefold dilutions of
cDNA are shown.



Light chain gene transcripts were found at similar
levels in sorted control or Igµ-deficient pro-B cells
(Figure 1b), but they were not amplified from Igµ–/–

total bone marrow cells that contain few pro-B cells
(46, 47). We conclude that light chain genes can be
recombined and expressed in the absence of Igµ in
human pro-B cells.

Igµ-independent VH, D, and JH gene segment usage. To deter-
mine whether Igµ expression is required for VH, D, or JH

segment selection, IgH genes from the three major VH

families, VH1, VH3, and VH4, were cloned and sequenced.
VH, D, and JH repertoire analysis revealed no statistically
significant differences between Igµ–/– pro-B cells, control
pro-B cells, and peripheral B cells (19, 20, 26–30) (see
supplemental data 1, www.jci.org/cgi/content/full/-
108/06/879/DC1). Of 27 D genes in humans, only the
D2-2 gene segment was over-represented in Igµ–/– and
control pro-B cells (P = 0.02) (31, 50) (see supplemental
data 2, www.jci.org/cgi/content/full/108/06/879/DC2).

Thus, the pre-BCR is not essential for VH selection, and
intrinsic genetic factors are responsible for specific VH,
D, and JH gene usage in human B cells.

IgH CDR3 selection by Igµ. To determine whether Igµ
expression influences CDR3 selection, CDR3 length
and amino acid composition were analyzed in Igµ–/–

pro-B cells and compared with control pro-B and
peripheral B cells. About two-thirds of IgH genes were
out of frame in Igµ–/– pro-B cells, confirming the
absence of Igµ-mediated selection in these cells (Table
1) (20). In contrast, two-thirds of IgH CDR3s were
found to be in-frame in control CD34+CD19+ precur-
sor cells, suggesting early Igµ-mediated positive selec-
tion of a subpopulation of CD34+CD19+ cells that
express Igµ (Table 1). We compared IgH genes
expressed by Igµ–/– pro-B cells to the in-frame IgH genes
expressed by control CD34+CD19+ cells and found an
average CDR3 length of 16.0 and 16.5 amino acids,
respectively, whereas peripheral B cells showed an aver-
age CDR3 length of 13.5 amino acids (Figure 2a). D-D
fusions that increase the length of CDR3 were found in
about 2% (4 of 198) of the IgH sequences from Igµ–/–

pro-B cells and in 2.6% (3 of 117) of those from control
CD34+CD19+ cells, but were absent in peripheral B cells
(49, 50) (data not shown). We conclude that IgH CDR3
length is not selected in early B cell precursors and that
long CDR3s and D-D fusions are counterselected dur-
ing late stages of B cell development.

D segments can be used in three different reading
frames, but in humans, RF1 tends to encode stop
codons, RF2 usually encodes glycine residues, and
hydrophilic amino acids and RF3 is biased to encode
hydrophobic sequences (50). D segments in RF1 are
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Figure 2
IgH CDR3 characteristics in pro-B cells. (a) VHDJH CDR3 length in
350 peripheral B cell (white bars), 117 in-frame control pro-B (gray
bars), and 197 Igµ–/– (black bars) individual sequences. CDR3 length
in amino acids (aa) is indicated below. The average CDR3 length for
peripheral B, control pro-B, and Igµ–/– pro-B cells was 13.5, 16.5,
and 16.0 amino acids, respectively. (b) D reading frame usage in IgH
CDR3s from peripheral B, control, and Igµ–/– pro-B cells. The three
RF uses reported by Corbett et al. (50) for some commonly used D
gene segments are represented. D3-3 and D3-10 encode no intra-
genic stop codons whereas D6-13, D2-15, D4-17, and D3-22
sequences using RF1 display stop codons.

Table 1
CDR3 frame analysis in CD34+CD19+ pro-B cells

Control Igµ–/– Igµ∆

CDR3 Frame Frame Frame

Out In Stop codonA Out In Stop codonA Out In

H 69 (33%) 141 (67%) 11 (7.8%) 143 (73%) 54 (27%) 24 (44%) – –
κ 10 (45%) 12 (55%) 21 (55%) 17 (45%) 25 (68%) 12 (32%)
λ 11 (55%) 9 (45%) 6 (60%) 4 (40%) 15 (54%) 13 (46%)

AStop codon frequency is calculated among in-frame CDR3s.



normally under-represented in peripheral B cells and
were counterselected in control CD34+CD19+ cells (Fig-
ure 2b, top and bottom row, and Table 1). In contrast,
there was neither RF selection nor stop codon counter-
selection in Igµ–/– pro-B cells (Figure 2b, top and bot-
tom row, and Table 1). D3-3 or D3-10 genes that do not
contain intragenic stop codons in RF1 were used in all
three RFs in Igµ–/–, control CD34+CD19+, or peripheral
B cells (Figure 2b, middle row). In addition, hydrophilic
(RF2) and hydrophobic (RF3) Ds were used equally in
Igµ–/– and control CD34+CD19+ cells whereas RF2 was
favored in peripheral B cells (Figure 2b) (31, 50). How-
ever, D3-22 RF usage was already selected in control
CD34+CD19+ cells since RF3 was clearly counterselect-
ed (and/or RF2 positively selected) when functional Igµ
chains were generated (Figure 2b, bottom row). Thus,
IgH CDR3s containing stop codons are counterselect-
ed in early B cell precursors whereas CDR3s with
hydrophilic or hydrophobic RF are not.

Ongoing Igκ recombination in Igµ-deficient pro-B cells.
To characterize light chain gene expression in
human pro-B cells, we amplified and sequenced Igκ
mRNAs from Igµ–/– and Igµ∆ pro-B cells and com-
pared them with those of control pro-B and periph-
eral B cells (49). We found that Igκ mRNAs
expressed in Igµ–/– and Igµ∆ pro-B cells showed
decreased Jκ1 and increased downstream Jκ3 usage
when compared with normal B cell controls (Figure
3a). In addition, Jκ3-4-5 segments from Igµ–/– and
Igµ∆ pro-B cells were preferentially combined with
upstream Vκs (P = 0.005, Figure 3b) whereas there
was no such bias in the Jκ3-4-5 Igκ mRNAs from nor-
mal pro-B cell and peripheral B cell controls. In con-
trast, there was no bias in Vκ gene usage for Igκ
genes using Jκ1-2 segments in patients and controls
(Figure 3b). We conclude that in the absence of Igµ
there is a shift in the Igκ repertoire to downstream
Jκs and upstream Vκs consistent with secondary Igκ
rearrangement in pro-B cells.

Igκ CDR3 analysis revealed that the ratio of produc-
tive to nonproductive Vκ-Jκ joints in human pro-B cells
was similar to that reported for mIgµ-deficient mouse
(µMT) pro-B cells (54). Igκ CDR3 length was increased
in all pro-B cell samples when compared with periph-
eral B cells (Table 1 and Figure 4a). We found that Igκ
CDR3s from control pro-B cells and from the patients
had an average of 10.2, 11.2, or 11.1 amino acids where-
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Figure 3
Igκ light chain repertoire in pro-B cells. (a) Jκ usage in 108 peripher-
al B, 22 control pro-B, 38 Igµ–/–, and 37 Igµ∆ pro-B VκJκ individual
sequences. Percentages of Jκ usage are indicated. (b) Vκ usage in
upstream Jκ1 and Jκ2 (Jκ1-2; top) and downstream Jκ3, Jκ4, and Jκ5
(Jκ3-4-5; bottom) rearrangements of peripheral B cells (white bars),
control pro-B (light gray bars), Igµ–/– (black bars), and Igµ∆ (dark-
gray bars) pro-B cells. The Vκ genes are subdivided in four groups on
the locus (84). The percentages of each Vκ group are indicated on
the y axis. *Statistically significant difference (P < 0.001).

Figure 4
Igκ CDR3 characteristics in pro-B cells. (a) Igκ CDR3 length in amino
acids and (b) N nucleotide (nt) addition in peripheral B cells (white
bars), control pro-B (light gray bars), Igµ–/– (black bars), and Igµ∆

(dark gray bars) pro-B cells. For determination of N nucleotide addi-
tion, P nucleotides were not included. The average CDR3 length and
N nucleotide addition for peripheral B, control pro-B, Igµ–/–, and Igµ∆

pro-B cells was 9.0, 10.2, 11.2, and 11.1 amino acids and 1.0, 3.6,
7.3, and 6.8 nucleotides, respectively.



as Igκ CDR3 from peripheral B cells were only 9.0
amino acids long (Figure 4a). The increased CDR3
length in pro-B cells was due to terminal deoxynu-
cleotidyl transferase-catalyzed (TdT-catalyzed) addi-
tion of template-independent (N) nucleotides and not
to template-dependent P nucleotides (Figure 4b). On
average, 3.6, 7.3, and 6.8 nucleotides were added by TdT
to Igκ gene CDR3s in control, Igµ–/–, and Igµ∆ pro-B
cells whereas only 1 N nucleotide was found in Igκ
genes expressed by peripheral B cells (Figure 4b). We
conclude that pro-B cells produce Igκ genes with
unusually long CDR3s.

Igλ repertoire of Igµ-deficient pro-B cells. To determine
whether Igλ genes expressed in Igµ-deficient pro-B
cells displayed features similar to Igκ genes we ana-
lyzed the Igλ repertoire. Although the human Igλ
locus should allow deletional replacement of VJλs by
secondary recombination (55), we found no signifi-
cant increases in either downstream Jλ or distal Vλ seg-
ment usage in Igµ–/– and Igµ∆ pro-B cells. In fact, there
was a decrease in downstream Jλ3 segment usage (56,
57) (Figure 5, a and b).

Igλ genes expressed in control, Igµ–/–, and Igµ∆ pro-
B cells resembled Igκ genes in that they showed a sim-
ilar ratio of in-frame and out-of-frame sequences and
long CDR3s, resulting from addition of N
nucleotides by TdT (Figure 6, a and b, and Table 1).
The average number of N nucleotides in Igλ CDR3s
from control, Igµ–/–, and Igµ∆ pro-B cells was 3.9, 5.0,
and 6.5 as compared with 1.2 for mature B cells (Fig-

ure 6b). We conclude that the Igλ genes expressed by
Igµ–/– and Igµ∆ pro-B cells differ from Igκ genes in
that they show no signs of secondary recombination,
but they resemble Igκ genes in that they display long
CDR3s with extensive N addition.

Discussion
The absence of Igµ in Igµ–/– and Igµ∆ patients provided
an opportunity to study the role of Igµ in selecting the
Ab repertoire in humans. We found no significant dif-
ferences in the Ig heavy chain gene VH, D, or JH repertoire
between Ig-deficient pro-B cells, control pro-B cells, and
normal peripheral B cells. These findings are in agree-
ment with cell-sorting experiments in which normal pro-
B, pre-B, and immature B cell repertoires were compared
with that of peripheral B cells (19–21, 31). Thus, VH, D,
and JH segment usage in humans is independent of Igµ
expression and is likely to be a function of intrinsic
genetic elements controlling VH, D, or JH gene accessibil-
ity and recombination. In contrast, IgH CDR3 length
appears to be selected throughout B cell development
starting with CD34–CD19+IgM– pre-B cells (33). Our
analysis of Igµ–/– and control CD34+CD19+ cells showed
that Igµ expression is not involved in IgH CDR3 length
and hydrophilic RF selection in the human at the pro-B
cell stage. However, in-frame IgH genes without stop
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Figure 5
Igλ light chain repertoire in pro-B cells. (a) Jλ usage in 163 periph-
eral B, 20 control pro-B, 10 Igµ–/–, and 28 Igµ∆ pro-B VλJλ individual
sequences. Percentages of Jλ usage are indicated. (b) Vλ usage in
peripheral B cells (white bars), control pro-B (light gray bars), Igµ–/–

(black bars), and Igµ∆ (dark gray bars) pro-B cells. The Vλ locus is
shown clustered into three groups — A, B, and C — of Vλ genes (84).
The percentages of each Vλ group are indicated on the y axis.

Figure 6
Igλ CDR3 characteristics in pro-B cells. (a) Igλ CDR3 length in amino
acids and (b) N nucleotide addition in peripheral B cells (white bars),
control pro-B (light gray bars), Igµ–/– (black bars), and Igµ∆ (dark
gray bars) pro-B cells. The average CDR3 length and N nucleotide
addition for peripheral B, control pro-B, Igµ–/–, and Igµ∆ pro-B cells
was 10.5, 11.2, 11.4, and 11.6 amino acids and 1.2, 3.9, 5.0, and
6.5 nucleotides, respectively.



codons were enriched in control CD34+CD19+ B cell pro-
genitors, suggesting that an efficient selection process
driven by pre-BCRs operates in normal CD34+CD19+ B
cell precursors. These Igµ-positive B cell precursors dis-
playing surface pro-B cell markers are likely to be in tran-
sition to the pre-B cell stage and equivalent to the mouse
C′ early pre-B cell fraction of Hardy’s classification (58).
By analogy to Igµ or Igβ knockout mice, the C′ early pre-
B cell fraction is missing in Igµ–/– CD34+CD19+ precur-
sor B cells and results in a decrease of in-frame Igµ
rearrangements when compared with normal
CD34+CD19+ precursor B cells (10, 59).

In the mouse, ψL has been implicated in IgH reper-
toire selection by virtue of pairing with some but not all
VH domains (16, 18). Analysis of the VH repertoire in
λ5–/– mice showed that the normal repertoire shift seen
between the pro-B and the pre-B cell stage was absent
(16). However, differences in pairing efficiency between
ψL and IgH are not likely to influence the selection
against long or hydrophobic CDR3s in humans because
these features are prevalent in control CD34+CD19+

cells, in immature B cells that have passed ψL selection,
and in B cells that express ψLs in the periphery (31, 49).
A more likely explanation for selection against long and
hydrophobic IgH CDR3s is that these features are asso-
ciated with self-reactivity and might also interfere
directly with IgH and IgL pairing (31, 49, 60, 61). Imma-
ture B cells displaying such Ab’s therefore would be
silenced by deletion or receptor editing, or alternatively,
would fail to be positively selected in the mature B cell
compartment (39, 40, 42–44, 62–64).

In the mouse, two Igµ-mediated mechanisms
account for selection against self-reactive or poorly
pairing Ab’s during B cell development, receptor edit-
ing and deletion (39–44). Editing makes a major con-
tribution to the Ab repertoire in mice: up to 25% of
all Ab’s are produced by editing, but the role of dele-
tion in repertoire selection is not known (65). Our
experiments suggest that Igµ-mediated selection also
makes a large contribution to shaping the human Ab
repertoire. The selection against IgHs with long or
hydrophobic CDR3s found in pro-B cells would
require loss of at least 20–25% of all heavy chains.

In both mouse and human B cells, V(D)J recombina-
tion is generally ordered, starting with IgH rearrange-
ment in pro-B cells followed by IgL rearrangement in
pre-B cells (66, 67). However, analysis of mouse Igµ
mutants and normal pro-B cells showed that IgL genes
can recombine before IgH in pro-B cells (54, 68–71).
Our experiments show that human control and Igµ-
deficient pro-B cells are similar to their mouse coun-
terparts in that they undergo Igκ and Igλ gene
rearrangements. These results are in agreement with
the finding of rare IgL chain gene recombination in
normal human pro-B cells and in Epstein-Barr
virus–transformed fetal B cell precursors (67, 72). Thus,
IgL rearrangement in the human is similar to the
mouse in that it is not strictly dependent on Igµ expres-
sion or pre-B cell development.

Up to 50% of human light chains in normal periph-
eral B cells show N nucleotide addition, but Igκ or Igλ
CDR3s are never as long as 11 or 13 amino acids,
respectively (49, 73–76). Igκ or Igλ genes found in con-
trol and Igµ-deficient pro-B cells differ from those
found in normal peripheral B cells in that they show
extensive N nucleotide addition associated with long
IgL CDR3s that can reach up to 21 amino acids. Thus,
long IgL CDR3s are produced in early developing 
B cells but they appear to be incompatible with B cell
development and are deleted from the mature periph-
eral B cell repertoire.

Igµ-deficient pro-B cells express Igκ genes that dis-
play a bias to 3′ Jκs and 5′ Vκs consistent with persist-
ent V(D)J recombination. However, the bias to 3′ Jκs
was incomplete since there was no significant increase
in Jκ5, the most downstream Jκ segment. In addition,
there was no bias to downstream Jλs despite a genom-
ic configuration that allows secondary rearrange-
ments (55, 77, 78). We speculate that in the absence of
Igµ, human pro-B cells undergo several rounds of
recombination on Igκ but do not survive long enough
to allow extensive secondary recombination. The
absence of secondary recombination on Igλ in Igµ-
deficient pro-B cells may result from a delayed recom-
bination of this locus when compared with Igκ (79,
80). Alternatively, secondary recombination may be
less efficient for Igλ than Igκ.

Secondary Igκ recombination is prominent in Igµ-
deficient pro-B cells yet not in normal control pro-B
cells. Secondary recombination in Igµ-deficient pro-B
cells therefore appears to be a default mechanism in
the absence of Igµ expression, and termination of sec-
ondary recombination in developing B cells requires
BCR signaling. We speculate that the regulation of Ig
light chain gene recombination during B cell develop-
ment resembles that of T cell receptor-α (TCR-α)
chains during T cell development in that recombina-
tion is terminated by a yet to be determined positive
selection signal transduced by the BCR (81). Develop-
ing B cells remain in the pre-B cell compartment for a
few hours whereas developing T cells remain in the
CD4+CD8+ double-positive compartment for 3–4 days
(65, 82, 83). This kinetic difference may explain why Ig
light chains are allelic excluded in B cells whereas
TCR-α chains in T cells are not.
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