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Introduction
African American cancer patients have higher mortality rates and 
shorter survival times compared with European American patients 

(1–5). In the United States, for every 100,000 cancer patients, the 
age-adjusted cancer-associated mortality for African American 
versus European American patients was 189.54 and 163.54 respec-
tively, resulting in a disparity ratio of 13.87 % (2–5). When examined 
for individual tumor types, the disparity in mortality was higher in 
African American patients for cancers of the breast, colon, rectum, 
uterus, liver, lung, bronchus, and prostate with disparity ratios rang-
ing from 6.41% (for lung cancer across both sexual phenotypes) to 
118.52 % (for men with prostate cancer [PCa]). This observation is 
consistent with the 5- and 10-year survival data obtained from the 
Surveillance Epidemiology and End Results database (Supplemen-
tal Table 1; supplemental material available online with this article; 
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cancer disparity in tumor progression and clinical outcomes 
observed between these 2 populations. In light of this, our main 
goal was to examine if there exist common biological alterations 
across multiple cancers that distinguish tumors from African 
American patients from those of European American patients.

Results
We performed Gene Set Enrichment Analysis (GSEA) for 23 dif-
ferent cancer types independently using The Cancer Genome 
Atlas (TCGA) gene expression data, looking for common hallmark 
alterations capable of distinguishing tumors from African Amer-
ican patients from those of European American patients, across 
multiple cancer types (Figure 1A). These 23 cancer data sets con-
tained data on at least 10 tumors from African American patients. 
GSEA revealed positive enrichment for concepts including oxi-
dative phosphorylation (OXPHOS), DNA repair, and G2M check-
point in tumors from African American patients versus those from 
European American patients, across multiple cancer types (Fig-
ure 1, A and B, Supplemental Table 2; P < 0.01, FDR < 25%). Co- 
enrichment of DNA repair and the G2M checkpoint is not surpris-
ing as both are related to preserving DNA fidelity (17). OXPHOS 
is associated with mitochondria and energy production, and the 

https://doi.org/10.1172/JCI127579DS1). The specific reasons for 
this disparity have not been identified. However, genetic/biologic, 
environmental, and health care access/utilization factors are all 
thought to be contributory (6).

Recent studies suggest that biological factors can be crucial 
for racial inequalities in cancer incidence and clinical outcomes (7, 
8). For example, aggressive triple-negative breast cancer (BRCA) 
is more prevalent in African American women and is associated 
with higher levels of resistin, interleukin 6 (9), and 2-hydroxyglu-
tarate (10). PCa in African American patients has higher levels of 
17β-estradiol (11), prostate-specific antigen (12), androgen recep-
tor expression (13), and altered mitochondria (14). African Ameri-
can patients with hepatocellular carcinoma have a 7-fold increase 
in apolipoprotein 1 (APOA1) expression and reduction in hepato-
cyte nuclear factor 4α (HNF4α), with the latter being associated 
with increased metastasis (15). Furthermore, African American 
patients with non–small cell lung cancer have higher circulating 
levels of IL-1β, interleukin 10 (IL-10), and tumor necrosis factor α 
(TNF-α) compared with European American patients (16). Taken 
together, although these findings demonstrate independent dis-
ease site–specific biological alterations among African American 
and European American patients, they fail to explain the pan- 

Figure 1. Molecular concepts significantly enriched in tumors from self-reported African American patients compared with tumors from European 
American patients in pan-cancer GSEA analysis. (A) Heatmap showing the top 20 commonly enriched pathways in tumors from African American 
patients compared with tumors from European American patients, across multiple cancers. See normalized enrichment score (NES) scale on the top. All 
GSEA concepts listed are significant at FDR < 0.25. (B) Table showing the individual NES for the 3 top commonly enriched pathways for each cancer type 
(FDR < 0.05). (C) Heatmap showing enrichment of OXPHOS in 5 independent cancer data sets. (D) Table showing individual NES for the 5 independent 
data sets. Columns represent cancer type, and rows represent the enriched concepts. Shades of red and blue describe positive and negative enrichment 
scores, respectively. LAML, acute myeloid leukemia; STAD, stomach adenocarcinoma; SARC, sarcoma; HNSC, head and neck squamous cell carcinoma; 
KIRC, kidney renal clear cell carcinoma; LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; LIHC, live hepatocellular carcinoma; KIRP, kid-
ney renal papillary cell carcinoma; PRAD, prostate adenocarcinoma; KICH, kidney chromophobe; CESC, cervical squamous cell carcinoma and endocervical 
adenocarcinoma; GBM, glioblastoma multiforme; BLCA, bladder cancer; KIPAN, pan-kidney cohort; COAD, colon adenocarcinoma; OV, ovarian adenocarci-
noma; BRCA, breast cancer; LGG, brain low grade glioma; GBMLGG, glioblastoma multiforme low grade glioma; UCEC, uterine corpus endometrial carcino-
ma; PCPG, pheochromocytoma and paraganglioma; THCA, thyroid carcinoma; PCa, prostate cancer.
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hypothesized that there exist common transcriptional regulators 
controlling the OXPHOS gene set in tumors from African Ameri-
can patients across different cancer types.

To identify common transcriptional regulators of the OXPHOS 
gene set, we performed transcription factor enrichment analysis on 
each of the 23 cancer data sets. Among the different transcription 
factors identified within each cancer type (representative example 
for BRCA in Figure 3A), estrogen-related receptor 1 (ERR1) was 
the most significant and commonly enriched transcription factor 
in tumors from African American patients across all the 23 cancer 
types (Figure 3B, P < 0.0001, FDR < 0.01%, Supplemental Table 
5). ERR1 is known to regulate mitochondrial biogenesis in the 
presence of peroxisome proliferator–activated receptor gamma 
coactivator 1 α (PGC1α) (19). Indeed, we found that the 23 cancer 
types were also co-enriched for PGC1α (Figure 3C). Additional-
ly, there was a significant positive correlation between ERR1 and 
PGC1α for these cancer types (Figure 3D, Supplemental Table 6, 
P = 0.02, r = 0.47). Collectively, our findings suggest that tumors 
from African American patients are defined by elevated OXPHOS 
coupled to ERR1 and PGC1α gene set enrichment.

Given that ERR1 and PGC1α together have been shown to reg-
ulate mitochondrial biogenesis, and that OXPHOS is a product of 
mitochondrial respiration, we hypothesized that tumors from Afri-
can American patients would possess more mitochondria com-
pared with tumors from European American patients. To test this 
hypothesis, we performed tissue microarray analysis (TMA) on 
a cohort of PCa, laryngeal, and oral cancer samples, staining for 
mitochondria. Samples from African American patients stained 
significantly higher for mitochondria than those from European 
American patients in all 3 cancer types (Figure 4; refer to Supple-
mental Tables 7–9 for clinical data associated with the TMAs).

Discussion
Our data suggest that tumors from African American patients 
predominantly express more mitochondria, ERR1, and PCG1α in 
multiple cancer types. These findings could form the biological 
basis of disparity in pan-cancer clinical outcomes seen in African 
American patients. Interestingly, clinical trial data for metformin, 
a mitochondrial inhibitor, has shown that African American 
patients, in general, respond better to this drug than Europe-
an American patients (20). Metformin was also more effective 
in reducing the incidence of PCa and the risk of colorectal can-
cer death in African American patients compared with European 
American patients (21, 22). These findings provide a rationale 
for evaluating existing mitochondrial drugs to treat tumors from 
African American patients. Additionally, from a biomarker per-
spective, validation of our results could lead to the development 

generation of DNA damaging reactive oxygen species (ROS) (18). 
To validate these initial findings, we performed GSEA on 5 inde-
pendent data sets (GSE37751-BRCA, GSE64331-PCa, GSE6956-
PCa, GSE101929-lung cancer, GSE28000-colon cancer) and 
found a similar trend for OXPHOS enrichment in tumors from 
African American patients compared with tumors from European 
American (Figure 1, C and D, and Supplemental Table 3). Anal-
ysis of a subset of genes encoding different mitochondrial com-
plexes within the enriched OXPHOS pathway demonstrated that 
these were ubiquitously upregulated in several types of tumors 
from African American patients (Figure 2, Supplemental Table 4, 
refer to Supplemental Figure 1 for heatmap containing top 50% of 
genes associated with OXPHOS concept). With this in mind, we 

Figure 2. Genes associated with oxidative phosphorylation are elevated 
in tumors from African American patients relative to tumors  from Euro-
pean American patients, across 23 cancer types in TCGA. Log fold-change 
in expression of the genes between African American and European 
American tumors is shown. Shades of yellow and blue describe increased 
and reduced fold-change in African American versus European American 
comparison, respectively. Columns contain different cancer types and rows 
contain the genes. Genes are grouped based on their membership in the 5 
different mitochondrial complexes.
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is ranked according to expression differences between 2 experimental 
conditions. An enrichment score for each gene set is then calculated. 
This score represents the extent of overrepresentation of a gene set 
at either end of the continuum. In GSEA, the cumulative distribution 
function was constructed by performing 1000 random gene set mem-
bership assignments. A nominal P < 0.01 and a FDR < 25% were used 
as thresholds for determining the significance of the enrichment score 
(ES).The methodology works in synchrony with the Molecular Sig-
natures Database (MSigDB), which provides the gene set definitions 
in the form of 8 major collections (13,311 total gene sets). Out of the 
8 gene set collections, we focused on well-defined, large-scale bio-
logical processes, termed the Hallmark (H) Gene Set. For the GSEA, 
self-reported data on race were used to stratify TCGA samples into 
African American and European American groups.

Enrichment analysis to identify key transcription factors regulating 
the OXPHOS gene cluster. The OXPHOS gene cluster was defined 
as the set of core genes that contributed to the enrichment of the 
OXPHOS pathway in GSEA. We performed an enrichment analysis 
using the hypergeometric method to identify transcription factors 
motifs (TFT, C3) in the OXPHOS gene set derived from the MSigDB 
for each cancer type. A nominal P < 0.0001 and a FDR < 0.01% were 
used as thresholds to determine the significance of the enrichment. 
The results were represented using heat maps and bar graphs imple-
mented using the R package.

TMA. The PCa TMA used for mitochondrial staining was built by 
the Pathology and Histology Core at the Baylor College of Medicine. 

of mitochondrial metabolites as noninvasive biomarkers for can-
cer prognosis. Although this is the first report to demonstrate the 
existence of a common biological alteration in tumors from Afri-
can American patients in a pan-cancer setting, there is a limitation 
that should be addressed in future studies. In our study, the strat-
ification of patients into African American or European American 
groups in the TCGA data was solely based on self-reported infor-
mation associated with the clinical files accompanying these data 
sets. It is essential to confirm these results using ancestry-verified 
tumor data from African American patients. We have addressed 
this partially by using ancestry-verified PCa TMA that confirms 
increased mitochondria in tumors from African American patients 
relative to tumors from European American patients. Irrespective 
of this caveat, we expect our studies to motivate mechanistic stud-
ies focused on mitochondria using ancestry-verified preclinical 
models of African American patients.

Methods
GSEA. To characterize biologically relevant changes in molecular sig-
naling pathways among African American and European American 
patients, we employed GSEA (23) to identify significantly enriched 
concepts in each of the 23 tumor types in TCGA, each of which con-
tained data from at least 10 African American patients. The procedure 
for GSEA involves determining whether a predefined set of genes 
(e.g., genes involved in a particular molecular signaling pathway) is 
significantly different between any 2 groups. The entire list of genes 

Figure 3. OXPHOS gene cluster in tumors from African American patients enriches for ERR1 and PGC1α transcription factor motifs. (A) List of transcrip-
tion factor motifs enriched by the OXPHOS cluster in breast cancer (BRCA). The significance of the enrichment is described in the x axis. The y axis describes 
the different transcription factor motifs. ERR1 is the most enriched transcription factor motif in the OXPHOS cluster in breast cancer. (B) ERR1 is significant-
ly enriched in OXPHOS gene clusters across multiple cancers. The significance of the enrichment is described in the x axis. The y axis describes the different 
cancer types. (C) Same as in B, but for PGC1α. (D) A significant positive correlation is observed between ERR1 and PGC1α expression in tumors from African 
American patients enriched for OXPHOS pathway across multiple cancers.
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scored by Wendong Yu, a head and neck cancer pathologist. The TMA 
staining was determined using a combination of an intensity and extent 
score. These 2 values were then multiplied to generate a final score that 
was used to make the box plots.

Statistics. P values for the enrichment analyses were generated 
through the GSEA permutation test (1000 permutations). The FDR 
was determined using the Benjamini-Hochberg procedure (24). Sig-
nificance for the mitochondrial TMA analysis was determined using 
a 2-tailed Wilcoxon rank sum test. A P value less than 0.05 was con-
sidered significant.

Study approval. The use of all human tissues in this study was 
reviewed and approved by the Institutional Review Board at Baylor 
College of Medicine.
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