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Introduction
Type 1 diabetes (T1D) is an organ-specific autoimmune disease 
that leads to the destruction of pancreatic islet β cells, resulting in 
glucose dysregulation and a life-long dependence on exogenous 
insulin treatment. This autoimmune process typically begins years 
prior to clinical diagnosis (stages 1–2) and involves humoral and 
cellular immune responses (1). Upon diagnosis (stage 3), most 
individuals with T1D retain some level of functioning β cells, as 
indicated by the presence of circulating C-peptide, a byproduct of 
endogenous insulin processing (2), and the preservation of these 
functional β cells is associated with fewer clinical complications 
(3). Yet, the rate of functional β cell loss following diagnosis var-
ies among individuals (4, 5). A key question for the prediction and 
prevention of T1D and other autoimmune diseases is what factors 
contribute to the rate of disease progression.

The character of the immune response probably plays a role 
in the rate of functional β cell loss following T1D diagnosis, as 
treatment with immune-modulating therapies results in short-
term preservation of β cell function in some individuals (6). CD8+ 
T cells in particular influence T1D susceptibility and progression 
as clearly shown in mouse models (7–10), and islet-specific CD8+ 
T cells are detectable in the peripheral blood of individuals with 
T1D (11–15). Within the pancreas, CD8+ T cells are the most abun-

dant lymphocyte of insulitic islets (16), and both polyclonal and 
islet-specific CD8+ T cells are more prevalent in the pancreas of 
individuals with T1D than in at-risk or healthy controls (HCs) (15, 
17–19). In addition, some clues have emerged from responder 
analyses of immunotherapy clinical trials that implicate a role for 
CD8+ T cells. Partial exhaustion and central memory signatures of 
CD8+ T cells define responders in clinical trials of anti-CD3 (tepli-
zumab) (20–23), and the frequency of memory islet-specific CD8+ 
T cells in peripheral blood increases with treatment (24, 25). Thus, 
islet-specific CD8+ T cells probably play an important role in T1D 
progression and outcome. However, these autoantigen-targeting 
cells remain poorly defined due in part to the technical difficulty 
of identifying and extensively phenotyping rare, low-affinity auto-
reactive T cells.

Here, we took advantage of high-content, single-cell mass 
cytometry, or cytometry by time of flight (CyTOF), along with 
a combinatorial pooled peptide–loaded MHC tetramer (Tmr) 
staining approach (26) to identify and extensively phenotype 
antigen-specific CD8+ T cells. We also introduce DISCOV-R, an 
analytical solution for phenotypic classification of rare subpopu-
lations. Leveraging these technologies and analytical tools in HCs 
and individuals with T1D allowed us to (a) assess the phenotypic 
heterogeneity of rare islet-specific cells in individual subjects, (b) 
define common phenotypes of islet-specific CD8+ T cells across 
subjects, and (c) relate islet-specific phenotypes to the disease 
progression rate. We found that islet-specific CD8+ T cells exhib-
ited heterogeneous phenotypes in both HCs and subjects with 
T1D. The rate of disease progression in T1D subjects was linked to 
2 shared phenotypes: an activated memory phenotype was more 
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tering to generate a common phenotypic landscape. Finally, Tmr+ 
cells were overlaid onto the CD8+ T cell landscapes for analysis of 
their distribution, as described in detail in Supplemental Figure 3. 
DISCOV-R facilitates direct comparisons of complex phenotypes 
between subjects while minimizing (a) skew introduced by dis-
parate sample sizes, (b) sensitivity to outliers, and (c) homogeni-
zation resulting from the pooling of cells or subjects. This in turn 
enabled an unbiased assessment of the phenotypic distribution 
of rare, autoreactive cells both within and across subjects without 
masking individual heterogeneity.

Islet-specific CD8+ T cells are composed of 3 predominant CXCR3+ 
memory phenotypes. For an extensive characterization of islet- 
specific CD8+ T cells, we applied our CyTOF panel and DISCOV-R 
to PBMCs from individuals with T1D (n = 46) (Table 1 and Supple-
mental Table 3). For characterization of the antigen-specific Tmr+ 
cell phenotype, we restricted analysis to samples that contained 5 
or more Tmr+ cell events. We found heterogeneity of islet-specific 
CD8+ T cells within individual subjects and common phenotypes 
across subjects. Specifically, of the 12 shared phenotypes (clus-
ters) we defined among total CD8+ T cells across all individuals, 
islet-specific Tmr+ cells were identified in more than 1 cluster for 
most subjects. However, no individual subject had more than 10 of 
the 12 clusters containing islet-specific Tmr+ cells (Figure 1B and 
Supplemental Figure 4). Three common clusters (labeled 1, 11, and 
12 in Figure 1) contained the largest representation of islet-specific 
Tmr+ cells, accounting for greater than 20% of the islet-specific 
Tmr+ cells in more than 25% of the subjects (Figure 1C).

To define these 3 common islet-specific T cell phenotypes, we 
assessed the expression levels of phenotypic markers on all indi-
vidual clusters of total CD8+ T cells (Figure 1D and Supplemen-
tal Figure 5) and the 3 aligned islet-specific clusters (Figure 1E). 
Cluster 11, which was dominant only among islet-specific cells 
(Supplemental Figure 6), had an activated transitional memory 
phenotype with high expression of HELIOS and CD27. Cluster 12 
was also unique to islet-specific cells and had a transitional mem-
ory phenotype with high CD27 expression, but lacked HELIOS 
expression. Cluster 1 dominated among insulin- and virus-specific  
cells in addition to islet-specific cells (Supplemental Figure 6) 
and had a memory exhausted–like phenotype with high EOMES 
expression, intermediate TBET expression, and elevated expres-
sion of the multiple inhibitory receptors 2B4 (CD244), PD1,  

frequent among islet-specific cells of rapid progressors, whereas 
an exhaustion phenotype was more prevalent in slow progressors. 
The exhaustion phenotype was confirmed functionally and was 
not merely a consequence of more advanced age, disease state, 
or disease duration. Together, these data implicate the pheno-
type and function of autoreactive CD8+ T cells as key mechanisms 
underlying the rate of disease progression.

Results
In spite of the complex phenotypes and heterogeneity within 
autoreactive CD8+ T cells, approaches to analyze these rare T 
cell subsets in T1D typically utilize a small number of single- 
parameter values (11–15, 27). To address this issue, we generated 
a high-content CyTOF panel incorporating HLA class I tetramers 
to identify antigen-specific CD8+ T cells and additional mark-
ers of differentiation, activation, and exhaustion (Supplemental 
Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/JCI126595DS1). Tmrs contained a pooled 
set of HLA-A*0201–restricted peptides derived from known islet- 
associated autoantigens (Supplemental Table 2). We tested an 
insulin peptide separately from other islet antigens, as the phe-
notype of reactive cells might be expected to differ in individuals 
with T1D exposed to exogenous insulin. For comparison, we also 
included Tmrs containing 2 epitopes associated with chronic viral 
infection (12). We identified antigen-specific CD8+ T cells using 
a modified combinatorial Tmr staining approach based on the 
method described by Newell et al. (26) (Supplemental Figure 1). 
In verifying Tmr staining by CyTOF, we found that the intensity of 
Tmr staining was generally greater for the virus-specific pool than 
for the islet-specific pool (Supplemental Figure 1D and Figure 1A) 
and that both the Tmr+ frequencies and the intensities of markers 
were highly reproducible (Supplemental Figure 2), as previously 
described with flow cytometric Tmr analysis (11–15).

We detected low numbers of autoantigen-specific events for 
Tmr+ cells analyzed by CyTOF in both HCs and individuals with 
T1D. We used a computational strategy called DISCOV-R (dis-
tribution analysis across clusters of a parent population overlaid 
with a rare subpopulation) (Figure 1A), in which total CD8+ T cells 
from each individual were clustered, in this case using Pheno-
graph (28). Next, these individual clusters were aligned with 
CD8+ T cell clusters from other samples by hierarchical metaclus-

Table 1. Cohort demographics

Cohort Subgroup No. of subjects Sex (% male) Age (yr) 
at drawC

Age (yr) 
at diagnosisC

Disease duration (yr) 
at drawC

HCs NA 20 50.0 22.0 ± 9.4 (5–43) NA NA

T1D disease progression rateA Rapid 14 44.4 20.0 ± 12.5 (9–57) 17.9 ± 12.6 (7.2–54.9) 2.7 ± 1.4 (0.8–4.8)

Slow 23 30.4 25.4 ± 9.4 (13–47) 16.6 ± 7.7 (4.9–26.4) 9.4 ± 6.8 (5.0–30.7)

T1D disease durationB <5 years 4 25.0 22.3 ± 11.3 (12–37) 20.7 ± 10.7 (11.4–35.2) 2.0 ± 0.6 (1.6–2.9)

≥5 years 5 40.0 37.0 ± 17.1 (18–61) 18.3 ± 11.2 (7.7–36.9) 19.1 ± 17.5 (6.4–49.2)

ARapid progressors have less than 5 years’ disease duration with undetectable C-peptide (<0.05 ng/mL); slow progressors have 5 or more years’ disease 
duration while maintaining detectable C-peptide levels (>0.1 ng/mL). BLess than 5 years’ disease duration with detectable C-peptide (>0.1 ng/mL); 5 or 
more years of disease duration with undetectable C-peptide levels (<0.05 ng/mL). CReported as the mean ± SD (range). 
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islet-specific CD8+ T cells were phenotypically heterogeneous at 
both the individual and population levels, and a core set of 3 pre-
dominant CXCR3+ memory phenotypes was conserved among 
islet-specific cells across subjects.

We also detected islet-specific CXCR3+ memory CD8+ T cells 
in PBMCs from nondiabetic HLA-A2+ HCs (Supplemental Figure 
8). As illustrated in Figure 2, most HCs displayed similar frequen-
cies and phenotypes of antigen-specific cells compared with the 
T1D subjects in this study (Supplemental Figures 6 and 8). In both 
HCs and individuals with T1D, the transitional memory pheno-
types enriched for islet-specific cells (clusters 11 and 12) were not 
consistently represented among insulin- or chronic virus–specific  
cells, whereas the exhaustion phenotype (cluster 1) was preva-
lent in both virus- and insulin-specific cells. Thus, islet-specific 
cells are phenotypically heterogeneous and exhibit some unique  
phenotypes not consistently seen in other antigen-specific CD8+ T 
cells that are expected to have recurrent exposure to antigen.

Activated memory and exhaustion phenotypes discriminate sub-
jects with rapid and slow T1D progression. To address whether the 
phenotypes of autoreactive CD8+ T cells influence the rate of dis-
ease progression after onset in T1D, we stratified subjects by their 
rate of loss of β cell function. Subjects with rapid progression were 
less than 5 years from diagnosis but showed no detectable insu-
lin secretion (<0.05 ng/mL) (C-peptide); subjects categorized as 
slow progressors were 5 or more years from diagnosis with >0.1 
ng/mL C-peptide (Table 1 and Supplemental Table 3). We found 
no significant difference in the frequency of islet-specific CD8+ T 
cells between rapid and slow progressors (Figure 3A), even when 
outliers were excluded (data not shown); however, the proportion 
of exhausted (cluster 1) and HELIOS+ transitional memory (clus-
ter 11) phenotypes among islet-specific cells differed significantly 
when comparing rapid and slow progressors, whereas the clus-
ter 12 phenotype did not (Figure 3B). No other clusters differed 
among islet-specific cells between the rapid and slow progressors. 
On an individual basis, approximately half of the islet-specific 
CD8+ T cells in each cohort were of the common CXCR3+ mem-
ory phenotypes, and islet-specific cells from the majority of rapid 
progressors were enriched for cluster 11, whereas the majority of 
islet-specific cells of slow progressors were enriched for exhausted  
cluster 1 (Figure 3C). We also observed an increased frequency 
of the cluster 1 exhaustion phenotype in slow progressors among 
total CD8+ T cells (Figure 3D). These differences in the frequency 
of cluster 1 islet-specific cells were also seen when applying more 
stringent C-peptide cutoffs for rapid (<0.02 ng/mL, n = 9) and 
slow (>0.2 ng/mL, n = 12) rates of progression (P < 0.04, by 2-way 
ANOVA with Sidak’s test for multiple comparisons). A cutoff of 

TIGIT, and CD160. All 3 islet-specific clusters were CXCR3+, con-
sistent with previous reports (29). Thus, islet-specific CD8+ T cells 
are heterogeneous and dominated by 3 distinct CXCR3+ memory  
subsets: an exhaustion-like subset that was also dominant for 
insulin- and chronic virus–specific cells and 2 transitional memory 
phenotypes unique to islet-specific cells, 1 of which was HELIOS+.

Although inclusion of multiple antigen specificities within a 
pool of islet-specific Tmrs may account for the phenotypic hetero-
geneity, several lines of evidence argue against this. Antigen- 
specific cells identified by a single specificity (insulin) or only 2 
pooled Tmrs (virus) occupied 2 or more prominent clusters in the 
majority of individuals (Supplemental Figure 6). Moreover, the 
number of predominant phenotypes of islet-specific cells from a 
given individual was not correlated with the number of positive 
islet antigen specificities determined by flow cytometry (Sup-
plemental Figure 7). We performed cluster distribution analyses 
on all subjects with at least 5 Tmr+ events, resulting in exclusion 
of 7 of 46 subjects. Yet, when we only analyzed subjects with at 
least 25 Tmr+ events (n = 27), we found similar prominence of 3 
clusters, suggesting that outliers were not skewing our results. 
Last, our finding of phenotypic heterogeneity within islet-specific 
cells is consistent with others’ recent reports (30, 31). Therefore, 

Figure 2. Islet-specific CD8+ T cell frequency and phenotype do not differ 
between HCs and individuals with T1D. HCs (n = 20) were assayed with our 
Tmr-CyTOF panel and included in the DISCOV-R analysis as in Figure 1. (A) 
Frequency of islet-specific (Tmr+) cells within total CD8+ T cells was assessed 
and compared for HCs (n = 20) and T1D subjects (n = 46) using a Mann-Whitney 
U test. (B) Frequency of islet-specific CD8+ T cells among the 3 common islet- 
specific clusters was assessed for HCs (n = 13) and individuals with T1D (n = 39) 
with 5 or more Tmr+ events using 2-way ANOVA with Sidak’s test for multiple 
comparisons. Data represent the mean ± SD. TM, transitional memory.

Figure 1. Islet-specific CD8+ T cells are dominated by three CXCR3+ 
memory phenotypes across subjects with T1D. The DISCOV-R analysis 
method was applied to total CD8+ and islet-specific T cells from subjects 
with T1D (n = 46); the T cells had been assayed with the Tmr-CyTOF panel. 
(A) Schematic of the DISCOV-R method (see Methods and Supplemental 
Figure 3 for details) for 1 individual. (B and C) Distribution of islet-specific 
cells across the 12 aligned clusters for subjects with at least 5 Tmr+ cells  
(n = 39). (B) Data are displayed as a stacked bar graph for each sub-
ject, colored by cluster. The 3 clusters that are most dominant among 
islet-specific cells across subjects (clusters 1, 11, and 12) have heavy outlin-
ing and are stacked at the bottom. (C) Clusters containing more than 20% 
islet-specific cells for an individual are indicated in black. Arrows indicate 
clusters predominant in at least 25% of the samples; the detached 
bottom row indicates the mean frequency of cells within a cluster for all 
individuals on a scale from 0% (white) to 20% or higher (black). (D) Heat-
map of Z scores using arcsinh-transformed expression of 22 consistent 
markers (rows) for all individual clusters (columns) from all T1D subjects 
(n = 46), grouped into 12 aligned clusters (annotated with numbers and 
colors). Negative Z scores (aqua) represent underexpression, and positive 
Z scores (yellow) represent overexpression of markers in an individual 
cluster compared with the mean of expression intensity on total CD8+ T 
cells within a subject. Frequency of islet-specific (Tmr+) cells within an 
individual cluster is annotated above (white = 0%, black = 20%+). (E) 
Heatmap of the mean absolute arcsinh-transformed expression of 24 
markers for the 3 islet-specific clusters and total CD8+ T cells. Expression 
intensity ranges from 0 (dark purple) to 4+ (yellow).
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to slow progression (cluster 1), whereas none of the 
other clusters were associated with outcome.

The association between the exhaustion-like pheno-
type and T1D outcomes remains after accounting for 
disease duration and age. Factors beyond the rate of 
disease progression may contribute to the observed 
differential islet-specific CD8+ T cell phenotypes. 
Rapid and slow progressors were matched for sex 
and mean age at diagnosis. However, since slow pro-
gressors tended to be older in this cohort, and T cell 
exhaustion and memory are associated with more 
advanced age (32), we adjusted for age at sampling; 
yet, the differential phenotypes between rapid and 
slow progressors among islet-specific and total CD8+ 
T cells remained (Supplemental Figure 11). Further-
more, the 3 islet-specific phenotypes did not correlate 
with age in HCs (Figure 4A). Thus, exhaustion is not 
solely driven by the presence of disease or age but is 
instead related to disease outcome.

By definition, slow and rapid progressors dif-
fered by their disease duration. Thus, we assayed an 
independent cohort of T1D subjects stratified by dis-
ease duration but not distinguished by their disease 
progression rate (Table 1 and Supplemental Table 
3); we found no difference in the frequency of the 3 
common islet-specific clusters by disease duration 
(Figure 4B). To further test the influence of disease 
duration on exhaustion cluster 1, we performed lon-
gitudinal analyses on a subset of subjects for whom 
the disease duration was relatively similar, yet the 
frequency of the exhausted islet-specific cells was 
divergent. We did not observe major fluctuations in 
exhausted cluster 1 frequencies in islet-specific CD8+ 
T cells over time, and those with a lower proportion 
of exhausted cells did not gain this phenotype with 
longer disease duration (Figure 4C). Together, these 
data indicate that islet-specific CD8+ T cell pheno-
types differ by disease progression rate, and not age 
or disease duration.

Islet-specific CD8+ T cells from slow T1D progressors 
are functionally more exhausted. To confirm that cells 
in cluster 1 exhibited functional features of exhaus-

tion, we tested the proliferation and cytokine production of 
islet-specific CD8+ T cells. Consistent with their more exhausted  
phenotype, islet-specific cells that were most dominated by clus-
ter 1 were less proliferative in response to T cell receptor stim-
ulation (Figure 5, A and B). By comparison, the frequencies of 
clusters 11 and 12 were positively correlated with proliferation 
(Supplemental Figure 12). Additionally, islet-specific cells main-
tained only a limited ability to produce the cytokines IL-2 and 
IFN-γ, irrespective of the abundance of cluster 1 (Figure 5, C and 
D). Taken together, these findings support an exhausted-like 
phenotype (33) of cluster 1, which dominates islet-specific cells 
from slow progressors, exhibits low production of cytokine, and 
is marked by elevated expression of multiple inhibitory receptors 
and reduced proliferative capacity compared with islet-specific 
cells from rapid progressors lacking cluster 1.

25% for the frequency of islet-specific cells residing in cluster 1 
identified slow progressors with 70% sensitivity and 91% selec-
tivity. Discrimination of disease progression by these phenotypes 
was particular to islet-specific cells, as we found no differences 
between their frequencies among virus- or insulin-specific CD8+ 
T cells (Supplemental Figure 9).

Simplified gating for CXCR3, EOMES, and HELIOS, based on 
DISCOV-R clusters, approximated the phenotype of clusters 1, 11, 
and 12, with similar trends seen between rapid and slow progres-
sors, though such comparisons were not consistently statistically 
significant (Supplemental Figure 10). Thus, multidimensional 
definitions beyond a few well-defined markers are required to fully  
distinguish these disease-associated phenotypes, which included 
an activated transitional memory phenotype linked to rapid pro-
gression (cluster 11) and an exhausted memory phenotype linked 

Figure 3. Phenotype, not frequency, of islet-specific CD8+ T cells is associated with the 
rate of disease progression in T1D. The frequency of (A) islet-specific (Tmr+) cells within 
total CD8+ T cells was assessed for rapid (n = 14) and slow (n = 23) T1D progressors using a 
Mann-Whitney U test. The frequency of (B) islet Tmr+ or (D) total CD8+ T cells among the 
3 common islet-specific clusters was assessed for rapid (n = 11, red solid triangles) and 
slow (n = 20, blue open squares) T1D progressors with 5 or more Tmr+ events using 2-way 
ANOVA with Sidak’s test for multiple comparisons. Data represent the mean ± SD. *P < 
0.05 and ***P < 0.001. (C) Distribution of islet Tmr+ cells in clusters for individual sam-
ples; rapid progressors (n = 11) and slow progressors (n = 20) were organized by decreasing 
frequency of cluster 11 and increasing frequency of clusters 1 and 12 within each group.
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Discussion
Although islet-autoreactive CD8+ T cells were present in both HCs 
and individuals with diabetes, we found that characteristic pheno-
types of these cells reflect the rate of disease progression in T1D. 
Ample evidence indicates that islet-specific CD8+ T cells are a sig-
nificant driver of β cell destruction in T1D (34). However, across 
numerous studies involving individuals with T1D, the frequencies 
of islet-specific CD8+ T cells in peripheral blood have been neither 
consistently altered nor strongly correlated with disease progres-
sion (11–15, 35). Here, through an unbiased and multidimensional 
approach, we demonstrate that islet-specific CD8+ T cells of HCs 
and T1D subjects comprise 3 dominant phenotypes that display 
characteristics of transitional memory or exhausted memory cells. 
Crucially, however, autoreactive CD8+ T cell phenotypes in T1D 
subjects predicted outcome after onset of disease, an activated 
transitional memory phenotype with high proliferative potential 
was associated with rapid progression, and a more functionally 
exhausted phenotype corresponded with slow disease progres-
sion. Detection of these phenotypes may be used to more precisely 
classify patients and to select therapies that promote the mainte-
nance of β cell health.

The phenotype of autoreactive CD8+ T cells was not uniform. 
CD8+ T cells have various functions associated with distinct acti-
vation and differentiation states (36, 37). For example, following 
vaccination, viral antigen–specific cells exhibit a defined pheno-
type during the effector and memory phases of the immune 
response (38). Using the analytical tool DISCOV-R, we were able 
to define variable phenotypes of CD8+ T cells in multiple dimen-
sions and subsequently assess the phenotypes of rare antigen- 
specific cells. In contrast to temporal vaccine-induced, virus- 

specific cells and antigen-elicited gluten-specific CD4+ T cells 
(39), we found that chronic and latent virus-specific CD8+ T cells 
had substantial phenotypic heterogeneity. Our findings were con-
sistent with another report (26) and indicate the variable nature of 
the immune response to recurring antigen exposure (40). Impor-
tantly, we found that islet-specific cells were also phenotypically 
heterogeneous within an individual (30, 31), suggestive of variabil-
ity in islet-specific cell immune history and thus having potential 
consequences for autoimmune disease progression.

Three predominant CXCR3+ memory phenotypes of islet- 
specific cells were common across both HCs and subjects with 
T1D. An exhaustion-like phenotype was broadly shared among 
chronic virus–, insulin-, and islet-specific CD8+ T cells, consis-
tent with repeated antigen exposure in all 3 settings (41). How-
ever, there are several states of exhaustion (42). The islet-specific 
exhaustion cluster 1 differed from other clusters that also share 
features of exhaustion and were enriched in virus- and insulin- 
specific cells. Unlike islet-enriched exhaustion cluster 1, clus-
ters 2, 6, and 10 lacked CXCR3, expressed late differentiation or 
senescence markers, and were less abundant in both islet-specific  
and total CD8+ T cells. These more terminally exhausted cells 
were more prominent among insulin-specific cells, even within 
the same individual. The CXCR3+ and less terminal phenotype of 
the islet-specific cluster 1 suggests a precursor exhausted popu-
lation (42). Two other phenotypes we identified were unique to 
islet-specific cells (clusters 11 and 12) and not dominant among 
insulin- and virus-specific cells, indicating a different fate and 
function associated with exposure to native autoantigens from 
the pancreas as opposed to those seen for repeated viral antigen 
or abundant exogenous autoantigen as with insulin administra-

Figure 4. Age and disease duration do not 
determine islet-specific CD8+ T cell exhaustion. 
The frequency of islet-specific phenotypes 
among islet-specific CD8+ T cells was assessed 
for subjects with 5 or more Tmr+ events. (A) 
Frequencies in HCs (n = 13) as a function of age 
based on DISCOV-R results from Figure 2. Statis-
tical significance was determined by Spearman’s 
correlation. (B) Frequencies in T1D subjects who 
were not classified as rapid or slow progressors, 
grouped by disease duration (<5 years, n = 3, 
solid orange circles; ≥5 years, n = 5, open purple 
diamonds) on the basis of DISCOV-R results from 
Figure 1. A 2-way ANOVA with Sidak’s test for 
multiple comparisons revealed no statistically 
significant differences between the groups. Data 
represent the mean ± SD. (C) Frequencies in T1D 
subjects (n = 4) with samples drawn at 2 time 
points following disease onset, shown as paired, 
stacked bar graphs. The time points of the first 
draw were 3.2, 3.8, 4.8, and 5.5 years after dis-
ease onset, respectively.
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tion. These findings confirm and expand reports by other groups 
which have shown in a more focused manner that not all islet- 
specific cells exhibit the same differentiation state (19, 24, 27, 30, 
31, 35, 43–45) and that the phenotype of islet-specific cells partially  
overlaps with chronic virus–specific cells (24, 30, 43, 45).

Despite differential expression of most markers, a unifying  
feature of the 3 islet-specific phenotypes was the high level of 
expression of CXCR3, whose ligand, CXCL10, is upregulated 
in the pancreas in T1D (46) and could therefore promote islet- 
specific T cell migration to that site. Although CXCR3 expression 
is greatest in these 3 islet-specific phenotypes, we also observed a 
CXCR3-expressing naive subset that dominated in polyclonal and 
virus-specific cells. Naive CD8+ T cells have been reported in the 
pancreas of subjects with recent-onset T1D (18). The potential for 
this subset to be recruited to the pancreas along with autoreactive 
cells has important implications, because the presence of nonspe-
cific bystander CD8+ T cells in the pancreas in a mouse model of 
diabetes was found to be associated with attenuated effector func-
tions of islet-specific cells and protection from disease (47). Thus, 
the phenotype and function of the migrating cells that are not auto-
reactive may also contribute to disease progression.

Autoimmune disease progression may be modulated by func-
tional responses of CD8+ T cells. For example, inflammatory CD8+ 
T cells are associated with disease severity in systemic lupus ery-

thematosus (SLE) (48) and multiple sclerosis (49). By contrast, 
increased CD8+ T cell exhaustion is associated with a beneficial 
response to therapy in recent-onset T1D (20, 50) as well as slower  
disease progression or a better prognosis in Crohn’s disease, SLE, 
and vasculitis (51, 52). Comparisons of phenotypes of autoreac-
tive CD8+ T cells in health and disease have yielded mixed results. 
Some groups have found increased memory and CD57+ cells in 
individuals with T1D compared with HCs (27, 43), whereas oth-
ers found no difference (15, 19). We found that the comprehen-
sively defined islet-specific phenotypes, though variable across 
individuals, did not significantly differ by disease status and, 
indeed, were also present in HCs. Using established markers of 
CD8+ T cell differentiation, Yeo et al. described a positive correla-
tion between changes in C-peptide and changes in effector mem-
ory CD57+ β cell–specific CD8+ T cells among young individuals 
who were newly diagnosed with T1D, implicating antigen load as 
a driver of differentiation and peripheral migration of this T cell 
subset (53). However, the relationship of autoreactive CD8+ T 
cell function and rate of progression in established T1D remains 
relatively unexplored. Here, we found no differences in the fre-
quency of total islet-specific CD8+ T cells between rapid and slow 
progressors, but T1D subjects with rapid disease progression had 
a significantly greater proportion of islet-specific CD8+ T cells 
with a HELIOS+ transitional memory phenotype that is consis-

Figure 5. Islet-specific CD8+ T cells with an abundant cluster 1 (exhausted) phenotype are hypoproliferative and produce limited levels of the cyto-
kines IL-2 and IFN-γ. PBMCs from individuals with T1D (n = 11) with varying frequencies of cluster 1 among their islet-specific cells were stimulated with 
anti-CD3 plus anti-CD28. Cells were assayed by flow cytometry to identify islet-specific (Tmr+) CD8+ T cells (Supplemental Figure 13). Examples of gating 
for proliferation and cytokine production are shown for a rapid progressor (T1D-02) and a slow progressor (T1D-34) with low (4%) and high (60%) frequen-
cies of cluster 1, respectively. (A) Representative examples of the frequency of proliferated cells on day 5 among stimulated (black line) islet Tmr+ cells as 
measured by CellTrace dye dilution, using unstimulated (solid gray) cells as a gating control. (B) Frequency of proliferated cells among islet Tmr+ cells after 
5 days of stimulation, plotted against the frequency of cluster 1 determined by mass cytometry for each individual (n = 11). (C) Representative examples 
of IL-2 and IFN-γ production assessed at 6 hours among islet Tmr+ (black) or Tmr– CD8+ T cells (gray). (D) Frequency of IL-2+ and IFN-γ+ cells among islet 
Tmr+ cells after 6 hours of stimulation, plotted against the frequency of cluster 1 determined by mass cytometry for each individual (n = 10); no substantial 
cytokine production (<1%) was observed in the absence of stimulation. Statistical significance was determined by Spearman’s correlation. The difference 
in proliferation between islet-specific cells of rapid progressors (triangles, n = 3) and slow progressors (squares, n = 4) was not significant (P = 0.057), nor 
was cytokine production (P > 0.05) by Mann-Whitney U test.
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studies may address whether this reflects islet-specific CD8+ T 
cell composition in the pancreas. Although our current studies 
focused on 4 well-defined islet antigens, many new and altered 
islet-specific epitopes have been discovered recently (62). Deter-
mining whether these new specificities express similar pheno-
typic markers may elucidate the role of specific antigens and 
their associated phenotypes in the T1D disease course. The find-
ing that islet-specific CD8+ T cells from slow progressors were 
enriched for an exhausted phenotype indicates that therapies that 
augment and establish their exhaustion could be effective in pre-
serving residual β cell function after onset and makes the pheno-
type an attractive putative biomarker to predict disease trajectory 
and monitor therapeutic efficacy.

Methods
Study design and samples. On average, one-third of individuals diag-
nosed with T1D will lose detectable C-peptide within 5 years of disease 
onset (<0.017 nmol/L, or 0.05 ng/mL) (5, 63). Conversely, approxi-
mately one-third of individuals will retain C-peptide at levels 0.1 ng/
mL or higher (0.03 nmol/L) 5 years after diagnosis (64). In this study, 
we sought to assess these ends of the disease spectrum cross-section-
ally, using 5 years after onset and these C-peptide levels as cutoffs for 
distinguishing the rate of disease progression. Using our newly devel-
oped 35-parameter CyTOF panel with pooled Tmrs (Supplemental 
Table 2) in combination with 24 phenotyping markers (Supplemental 
Table 1) and applying a new analytical method for phenotyping rare 
subpopulations, DISCOV-R, we characterized antigen-specific CD8+ 
T cells from cryopreserved PBMCs from 20 HLA-A2+ HCs and 46 
HLA-A2+ T1D subjects, a subset of which was stratified by rapid (n = 
14, <0.05 ng/mL C-peptide within 5 years of diagnosis) and slow (n = 
23, >0.1 ng/mL C-peptide at 5 or more years into disease) rate of dis-
ease progression following diagnosis. Because age at onset is a known 
predictor of disease progression, these groups were matched for this 
feature (Table 1 and Supplemental Table 3). All assays were run and 
analyzed in a blinded manner, and staining batches included an inter-
nal control of a single HLA-A2– individual with or without a consistent 
low frequency of spiked preproinsulin- or CMV-specific clone that was 
used to set gates for Tmr+ cells.

Peptide-MHC Tmr generation. A biotinylated monomer of HLA-A2 
(2 mg/mL) loaded with peptides (Supplemental Table 2) chosen for 
their demonstrated presence in T1D (12) was obtained from the NIH 
Tetramer Core Facility. Metal-conjugated avidin (0.5 mg/mL) was 
provided by Fluidigm prior to commercial availability; premium-grade 
phycoerythrin-conjugated (PE-conjugated) streptavidin (1 mg/mL) was 
obtained from Thermo Fisher Scientific. Each monomer was diluted  
in PBS, and then multimerized by 6 additions (each followed by a 
10-minute incubation at 4°C) of 1/36th molar equivalents of 1 avidin, 
such that the final preparation contained a monomer at 0.16 mg/mL 
(2.4 mM) with a 6:1 molar ratio to avidin in 1% BSA, which was stored 
at 4°C for up to 1 month.

CyTOF staining, acquisition, and subset identification. Thawed 
cryopreserved PBMCs (1.5 × 106 to 2.5 × 106 per stain) were first 
stained for viability using 100 μL cisplatin (100 μM, Enzo Life Sci-
ences) in PBS for 1 minute at room temperature (RT), followed by 
quenching and washing with protein-containing media. Cells were 
then pretreated with 250 μL dasatinib (50 nM, LC Laboratories) for 
8–10 minutes at 37°C and washed prior to staining with 50 μL solution 

tent with activation and proliferation (54) as well as exacerbated 
autoimmunity (55). Transitional memory cells are highly prolifer-
ative and polyfunctional, and this subset is transiently expanded 
in acute but not chronic HIV infection (56), suggestive of a more 
aggressive disease state. For the first time to our knowledge, we 
clearly associate this islet-specific transitional memory phenotype 
with a rapid rate of disease progression, opening the possibility for 
selective targeting of these cells therapeutically in patients with 
established T1D.

Individuals with T1D with slow disease progression showed 
enrichment for islet-specific cells with functional features of 
exhaustion, regardless of disease duration and after accounting 
for age. T cell exhaustion plays opposing roles; it is deleterious 
in tumor and chronic viral infection (42, 57) but, as recently 
appreciated, beneficial in autoimmunity (58). Interestingly, we 
also observed the association of the exhaustion phenotype with 
slow disease progression among the polyclonal CD8+ T cell pop-
ulation within the same subjects, which suggests that intrinsic 
factors may promote exhaustion of islet-specific and total CD8+ 
T cells  in slow progressors. However, we observed that the phe-
notype is present in HCs and that not all specificities reflect this 
bias. Virus- and insulin-specific exhausted cells were not pref-
erentially increased in slow progressors, indicating an addi-
tional role for antigen exposure. In chronic viral infections and 
cancer, it is known that exposure to antigen in the absence of 
costimulation leads to exhaustion, typically within a few weeks 
(33). Our findings suggest that increasing the exhaustion pheno-
type could have a beneficial effect on outcome. Indeed, in T1D, 
therapeutic manipulation of the T cell receptor alone correlated 
with a more exhausted-like CD8+ phenotype in responders to 
treatment (20, 25).

Whether exhaustion among islet-specific cells of slow pro-
gressors precedes disease or is merely a consequence of time 
and disease duration has important implications for disease 
mechanisms, monitoring, and therapy. Here, we found that the 
exhausted-like islet-specific phenotype was clearly not tran-
sient. Instead, we show in longitudinal analyses of a subset of 
subjects with a range of exhausted cells that exhaustion is rel-
atively maintained over time within an individual. Also, the 
exhaustion phenotype was found at a similar range of frequen-
cies in HCs. Stability of the exhausted phenotype has also been 
demonstrated in the setting of long-term, chronic HIV infection 
(59), consistent with preserved epigenetic and transcriptional  
programming (33, 42, 60). This contrasts with the dynamic 
changes in exhaustion features associated with disease severity  
in rheumatoid arthritis (61). Future longitudinal assessments 
of phenotype, function, and epigenetics across a range of dis-
ease stages will help further dissect mechanisms underlying this 
apparent stability. These results also indicate that early inter-
vention to augment islet-specific T cell exhaustion may prevent 
or delay further disease progression.

In summary, using high-dimensional mass cytometry with 
a new analytical method, DISCOV-R, we revealed phenotypic 
heterogeneity among circulating autoreactive CD8+ T cells in 
HCs and individuals with T1D. We linked an activated memory 
phenotype with rapid disease progression after T1D onset and 
an exhausted phenotype with slow disease progression. Future 
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the false-positive rate (proportion of Tmr+ T cells when randomly  
assigned to a cluster exceeded the observed value) dropped off 
considerably at this threshold. In our validation of the DISCOV-R 
method, we found that individual clustering and cluster alignment 
were both highly reproducible (<25% CV for clusters of at least 3% 
frequency), as was the number of dominant islet-specific clusters 
present in an individual (mean 2 ± 1).

Flow cytometric assays of cytokine production and proliferation. 
Thawed cryopreserved PBMCs were cultured at 37°C with and with-
out stimulation with plate-bound anti-CD3 (OKT3, 1 μg/mL, BioLeg-
end) and soluble anti-CD28 (CD28.2, 2 μg/mL, BioLegend). For the 
cytokine production assay, cells were cultured for 6 hours, and brefel-
din A and monensin (BioLegend) were each added at 1× for the last 
4 hours. For the proliferation assay, cells were loaded with CellTrace 
Violet (Invitrogen, Thermo Fisher Scientific), according to the manu-
facturer’s instructions, prior to culturing for 5 days. Following cultur-
ing, cells were harvested; stained for viability using Zombie NIR (Bio-
Legend) according to the manufacturer’s instructions; stained with 
pooled islet-specific Tmrs, as in the CyTOF staining, acquisition, and 
subset identification section; and subsequently stained with the surface 
antibodies anti-CD14-BUV737 (M5E2), anti–CD19-FITC (HIB19), 
anti–CD56-PE-Cy7 (NCAM16.2), anti-CD3-BUV395 (UCHT1), anti–
CD4-BV605 (RPA-T4), and anti-CD8-BV786 (RPA-T8) in Brilliant 
Stain Buffer (all from BD Biosciences) to identify CD8+ T cells (Sup-
plemental Figure 13). For the cytokine production assay, cells were 
further fixed and permeabilized using the Foxp3 Transcription Factor 
Staining Buffer Set (Invitrogen, Thermo Fisher Scientific) and stained 
with anti–IL-2-BB700 (MQ1-17H12), anti–TNF-α-BV650 (MAb11), 
and anti–IFN-γ-BV421 (B27) (all from BD Biosciences). Cells were 
acquired on an LSRFortessa (BD Biosciences) and analyzed using 
FlowJo software.

Statistics. Beyond that which was described in DISCOV-R compu-
tational analyses, GraphPad Prism (version 7.05, GraphPad Software) 
was used to generate graphs and to perform either a Mann-Whitney 
U test to compare antigen-specific cell frequency or a 2-way ANOVA 
with Sidak’s test for multiple comparisons of the frequencies of the 3 
islet-specific clusters between 2 groups. Spearman’s correlation was 
used for assessment of bivariate data. All statistical tests were 2 sided.

Study approval. All samples were collected from the BRI’s Immune 
Mediated Disease Registry and Repository. Written informed consent 
was obtained from all subjects according to protocols approved by the 
BRI’s institutional review board (protocol number IRB07109).
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