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Introduction
From a holistic view, the immune system is not only responsible 
for discrimination of self and nonself, but is critically involved in 
regulating physiological processes throughout the body, including 
tissue repair and resolution following injury (1), a term encom-
passing mechanical damage, exposure to toxins, temperature fluc-
tuations, emotional stress, and dramatic changes in diet. Imme-
diately following injury, immune cells sense the perturbation and 
relay local and systemic signals to other parts of the immune sys-
tem (e.g., via cytokines) to induce appropriate and injury-adapted 
effector responses. As a final step, the immune system regulates 
and monitors repair and resolution of the threat, thereby reestab-
lishing homeostasis (Figure 1). These highly integrated process-
es, particularly during acute phases following injury, are often 
described as inflammation; yet, if the endpoint is not resolution, 
ongoing inflammation fosters chronic low-grade inflammato-
ry conditions, fibrosis, or abscess formation leading to diseases 
instead of homeostasis (2–5). An emerging picture indicates fast 
epigenetic regulatory mechanisms as critical activators of immune 
cells involved in early responses to injury (6, 7). However, much 
less is known about epigenetic reprogramming of immune cells 
during later phases, particularly during repair and resolution. 

Here, we focus on recent findings concerning epigenetic mecha-
nisms involved in regulatory immune processes during the later 
phases of the injury response.

Epigenetic reprogramming during immune cell 
activation
“Epigenetics” was first coined in 1942 by C.H. Waddington (8), 
but only in 2008 at a Cold Spring Harbor meeting did the scientific 
community agree on the definition: “An epigenetic trait is a sta-
bly heritable phenotype resulting from changes in a chromosome 
without alterations in the DNA sequence” (9). Today, epigenetic 
mechanisms are loosely understood and usually refer to DNA 
methylation, histone modifications, noncoding RNAs (ncRNAs), 
and chromatin accessibility and looping. 

Chromatin structure allows (when “open”) or prevents (when 
“closed”) binding of transcriptional machinery to a DNA segment, 
consequently activating or silencing gene expression (Figure 2A). 
Chromatin accessibility is therefore used to define gene regulatory 
elements such as enhancers, promoters, and silencers. Various his-
tone modifications are enriched at these sites. In general, histone 
acetylation is found on regulatory elements of active genes, where-
as H3K27 trimethylation (H3K27me3) characterizes regulatory 
elements of silenced genes (10). H3K4 methylation (H3K4me) is 
widely regarded as a mark of transcriptional activity but, depend-
ing on location and crosstalk with other epigenetic modifications, 
can also mark nonexpressed genes; e.g., the presence of both 
H3K27me3 and H3K4me marks regulatory elements of genes that 
are not expressed but are readily induced upon stimulation, there-
fore “poised” for expression (11–13). While promoters are enriched 
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open chromatin region necessitates examination of the collective 
view of transcription factors bound to the region and long-distance 
interactions. In Tregs, for instance, Foxp3 gene induction causes 
appearance of very few de novo enhancers, but Foxp3 binds to pre-
existing open sites in Foxp3– CD4+ T cells, exemplifying the impor-
tance of enhancer usage by transcription factors (37). LPS stimu-
lation of macrophages induces a tolerance program that silences 
proinflammatory genes, including IL6. However, antimicrobial 
genes like CNLP remain inducible (38). Distinct chromatin acces-
sibility and histone modification patterns on both classes of genes 
determine their readiness to be re-expressed. TLR4 engagement 
precedes the appearance of H3K4me1, H3K4me2, and H3K27ac 
peaks at de novo (or latent) enhancers; these are maintained and 
enable enhanced expression of target genes upon secondary stim-
ulation (39–41). Interestingly, the tissue environment also shapes a 
specific chromatin signature in tissue-resident macrophages (42).

Regulatory elements can be located far upstream of a gene’s 
transcriptional start site and must be brought into physical prox-
imity with the gene promoter by chromatin looping to impact gene 
expression. Interaction between regulatory elements is believed 
to facilitate the recruitment of transcriptional machinery; hence 
chromatin looping is another epigenetic mechanism regulating 
gene expression (43). A classic example of such regulation with-
in the immune system is the recombination of antigen receptor–
coding genes (44). Furthermore, chromatin looping regulates 
expression of various cytokines in activated T cells, e.g., the type 2 
cytokine locus comprising Il4, Il5, and Il13 (45, 46), as well as Ifng 
(32), Tnfa (47), and Il21 (48). Likewise, LPS stimulation of macro-
phages induces DNA loops at the IL1/IL36/IL37 gene cluster (49) 
or osteopontin (Spp1) locus (50). More recent genome-wide stud-
ies of chromatin conformation in hematopoietic cells revealed 
cell type–specific interactome signatures (51–53); hence processes 
including monocyte differentiation toward macrophages (54), B 

in H3K4me3, enhancers carry H3K4me1 (14). Histone modifica-
tions can affect chromatin compaction or recruit transcriptional 
regulators. Next-generation sequencing–based techniques such as 
DNase I hypersensitivity assay followed by sequencing (DNase-
Seq; refs. 15, 16), assay for transposase-associable chromatin using 
sequencing (ATAC-Seq; ref. 17), and ChIP followed by sequencing 
(ChIP-Seq; ref. 18) enable investigation of chromatin accessibility 
and histone modification distribution at a genome-wide and sin-
gle-cell level. These technological advances hugely impacted stud-
ies mapping and deciphering the role of DNA-associated proteins 
and accessible DNA regions in many cell types and diseases.

Initial evidence that external stimuli influence immune cell 
chromatin came from studies of T cell activation (19, 20), reveal-
ing the extremely compact chromatin in naive T lymphocytes 
accompanying their low-level gene expression. Antigenic encoun-
ter induces increased nuclear volume, recruitment of chromatin 
remodeling complexes to DNA, appearance of loose chroma-
tin, and activation of thousands of genes, including IL2 (19–21). 
Altered histone modification patterns consistently accompany 
activation processes of various immune cells. Genes induced 
during transition from naive to germinal center B cells gain acti-
vating histone marks such as H3K4me and H3ac, while silenced 
loci lose these marks (22). Similarly, H3K4me and histone acetyl-
ation are increased in effector and memory T cells at loci linked to 
genes induced upon activation of naive CD8+ (23–26) and CD4+ T 
cells (27). Conversely, genes that become downregulated in effec-
tor CD8+ T cells lose activating histone marks and gain suppressive 
H3K27me3 at adjacent loci (25, 26, 28). Naive immune cell acti-
vation also causes changes in chromatin accessibility that largely 
correlate with changes in gene expression (29–36). Yet exceptions 
exist, exemplified by Fasl and Prf1, which are highly inducible upon 
CD8+ T cell activation but show no significant changes in chroma-
tin accessibility at adjacent loci (35). Assessing the function of an 

Figure 1. Immune cell activation during different phases upon tissue injury. Tissue-resident immune cells, particularly γδT cells or resident macrophages, 
recognize damaged cells upon injury, e.g., via the NKG2D receptor or TLRs, respectively. Activated tissue-resident cells secrete soluble factors that attract 
other immune cells, such as proinflammatory cytokines (TNF-α, IFN-γ, IL-6, or IL-1) together with growth factors (PDGF, VEGF, or IGF-1) that stimulate epi-
thelial cell proliferation. CXCL8 released by tissue-resident cells in response to TLR activation attracts neutrophils, which enter the site of injury. Neutrophils 
produce antimicrobial molecules, cytokines, and growth factors such as VEGF-A, which recruits other inflammatory cells such as monocytes and stimulates 
angiogenesis and tissue cell proliferation. Recruited phagocytes clean damaged tissue debris by phagocytosis and secrete various cytokines, proteases, 
and growth factors promoting tissue repair. They first acquire proinflammatory function [classically activated, or M(IFN-γ), macrophages] and, when the 
pathogen is cleared, can be repolarized toward antiinflammatory tissue repair [alternatively activated, or M(IL-4), macrophages] in the presence of cytokines 
produced by type 2 immune T cells. M(IL-4) macrophages secrete arginase; the growth factors VEGF-A, PDGF, and IGF; and other molecules. In the resolution 
phase, regulatory T cells suppress immune response by secreting IL-10 and TGF-β. Further, lipid-derived specialized pro-resolving mediators actively promote 
inflammation cessation, resolution, and repair.
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germline cells (66). Similarly, global hypomethylation does not 
induce genome-wide activation of transcriptome in primordial 
germ cells (67). DNA methylation can also occur in non-CpG con-
text (5mCH, where H represents A, C, or T) in almost all human 
tissues (68–70). 5mCH is present in globally high levels in naive 
T cells (71), yet its function is largely unknown. For decades, DNA 
methylation was considered a very stable modification. With the 
discovery of ten-eleven translocation (TET) DNA dioxygenases, 
which actively remove methyl groups from CpG sites by convert-
ing 5mC to 5-hydroxymethylcytosine (72) and further to 5-formyl-
cytosine and 5-carboxycytosine (73, 74), and the recent develop-
ment of next-generation sequencing–based technologies allowing 
genome-wide studies of DNA methylation at the single-cell level, 
it emerged that the DNA methylation fingerprint is reversible and 
dynamic (75). DNA methylation’s important role in immune cell 
development and activation (76) makes it a potential therapeutic 
target for treatment of inflammation-driven diseases. Deleting or 
pharmacologically inhibiting DNA methyltransferases (DNMTs) 
using 5-aza-2′-deoxycytidine decreases inflammation in models 
of atherosclerosis and obesity (77–79). DNMT3B targets the pro-
moter of PPARG, a key transcription factor for alternative acti-

cell activation (29, 55), and T cell development (56) and differ-
entiation (57) are accompanied by genome-wide reorganization 
of chromatin loops. Much remains unknown about chromatin 
interaction dynamics in different biological processes, including 
injury. New technologies are emerging to address these questions, 
including high-throughput chromosome conformation capture 
(HiC; ref. 58), next-generation Capture-C (NG Capture-C; ref. 
59), chromatin interaction analysis by paired-end tag sequenc-
ing (ChIA-PET; ref. 60), protein-centric chromatin conformation 
method (Hi-ChIP; ref. 61), and transposase-mediated analysis of 
chromatin looping (Trac-looping; ref. 62).

DNA methylation (the presence of 5-methylcytosine [5mC]), 
which in vertebrates affects mainly palindromic CpG sites, can 
also change a gene transcription, e.g., by affecting binding of 
methylation-sensitive transcription factors (63, 64). It is broad-
ly accepted that DNA methylation is a suppressive mark, yet its 
role is still not fully understood. Depending on its location with-
in the genome, tissue-specific distribution, and cellular context, 
it mediates transcriptional repression but has also been linked to 
gene activation (65). For example, “atypical” promoters enriched 
in 5mC and H3K4me3 but driving transcription were found in 

Figure 2. Epigenetic events in immune cells during tissue injury. (A) Possible modes of epigenetic regulation to tune immune cell function. On the 
left, mechanisms of repressing transcription such as closed chromatin, DNA methylation, repressive histone marks, or inhibiting long noncoding RNAs 
(lncRNAs) are depicted. On the right, a locus with active transcription is depicted, including loss of DNA methylation, open chromatin structure including 
accessible enhancer and promoter sequences, activating histone modifications, and activating transcription factors. Different histone marks are presented 
as colored dots. (B) During immune cell activation, epigenetic regulation leads to activation of prior silent genes, while some homeostatic genes are turned 
off. Epigenetic events during homeostasis and activation of immune cells have been experimentally addressed, while elucidation of these processes during 
repair and resolution still needs to be resolved.
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and hold a variety of functions. Based on these characteristics, they 
are segregated into different classes (91, 92). The best-character-
ized class of ncRNAs are short (<200 bp) microRNAs (mi RNAs) 
that silence gene expression by either inducing degradation of 
target mRNA or blocking its translation (93–95). Long noncoding 
RNA (lncRNA; >200 bp) can also silence gene expression at the 
transcriptional level by affecting chromatin structure (92). This is 
achieved by directing de novo DNA methylation (96) or histone 
modification patterns (97), or mediating chromatin looping (98).

Immune cell differentiation and activation are accompanied 
by huge changes in ncRNA expression (99–101); e.g., TLR2 stim-
ulation of macrophages induces the long intergenic ncRNA lin-
cRNA-Cox2, which regulates IL-6 and CCL5 expression (102), or 
downregulates linc1992 (or THRIL), which affects TNF-α expres-
sion (103). TLR4 stimulation induces high levels of lnc-IL7R, 

vation of macrophages, leading to PPARG suppression and thus 
a cellular proinflammatory state (79). Similarly, TET deficiency 
drives increased IL-6 and IL-1B expression in activated macro-
phages, which leads to impaired resolution of inflammation (80–
83), suggesting a role of DNA methylation in macrophage activa-
tion. Transition from naive B and T cells to effector and memory 
cells also involves DNA methylation as loci responsible for effec-
tor functions progressively lose this mark (84–88). Furthermore, 
in γδT cells, DNA methylation status of the Ifng locus controls the 
ability to produce high amounts of IFN-γ (89), whereas in Tregs, it 
plays a crucial role in maintaining cell identity by regulating Foxp3 
expression necessary for Treg development and function (90).

ncRNAs belong to a still-growing list of newly recognized gene 
regulators. These regulatory RNAs are not translated into proteins, 
range in size, are transcribed from different genomic locations, 

Figure 3. Integrated view of the epigenetic processes occurring over time during injury, repair, and resolution. Epigenetic regulatory mechanisms can be 
studied on the level of population, individual, and tissues and organs, as well as the single-cell level. Since any injury is followed by a sequence of process-
es ranging from immune system activation to peak reactivity to repair and resolution, time-resolved analyses of epigenetic processes are required. At the 
different levels (population, individuals, tissues and organs, and single cells), different multi-omics approaches can be applied to determine epigenetic 
regulation. Resolution, complexity that can be determined, scalability of epigenetic assays, and costs of analyses differ substantially between the differ-
ent settings. Future studies particularly targeting the repair and resolution phases will require sophisticated planning of overall goals and experiments to 
be performed. eQTL, expression quantitative trait loci; epiQTL, epigenetic quantitative trait loci.
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Stroke is one example of tissue injury for which the impact of 
epigenetic regulation is already addressed (119). Dynamic global 
changes in DNA methylation are associated with atherosclerosis 
progression (120) and stroke outcome (121). More specifically, 
studies have linked stroke incidence or outcome to the regulation 
of genes involved in platelet conglomeration (TRAF, PPM1A; refs. 
122, 123); cell adhesion and thereby leukocyte recruitment during 
acute inflammation (LINE-1; ref. 124); and angiogenesis induction 
during repair (THBS1; refs. 125–128). Yet, contradictory reports 
concerning DNA methylation’s impact in different stroke subtypes 
indicate a need for more in-depth analysis of different pathologi-
cal settings, discrimination of epigenetic changes on the gene lev-
el, and, more importantly, study of cell type–specific alterations 
(119). As histone H3 acetylation is greatly reduced upon ischemic 
stroke, many studies found that inhibition of histone deacetylation 
was favorable for stroke outcome: it suppressed microglia activa-
tion, induced neuroprotective proteins (e.g., IGF-1 or Hsp70), and 
favored functional recovery (reviewed in ref. 119). Albeit encour-
aging, detailed knowledge concerning the influence of the differ-
ent histone deacetylase (HDAC) inhibitors on different members 
of the HDAC family and their specific effects in different cell types 
remains incomplete.

Similarly, histone methylation status and transcriptome regu-
lation by differential miRNA production have been addressed in 
the context of stroke. While some altered epigenetic marks were 
generally described, studies have not yet addressed immune 
cells in particular, as descriptions remain on the tissue level 
(119). Recent results from the miRNA field address this issue; 
e.g., miR-155 and miR-210 induce a proinflammatory signature 
in microglia (129), and a miR-155 antagomir proved neuroprotec-
tive by reducing inflammation and infarct size in a mouse model 
for ischemic stroke (130). Conversely, miR-let-7a downregulates 
proinflammatory IL-6 and iNOS and upregulates factors involved 
in counteracting inflammation and supporting resolution, e.g., 
IL-4, IL-10, and brain-derived neurotrophic factor (BDNF) (131). 
In fact, many miRNAs have been identified as regulating tran-
scriptional programs during the different phases of acute inflam-
mation, resolution, and repair upon injury (132).

Aside from ischemic insult in stroke, epigenetic regula-
tion of immune cells throughout injury has been addressed in 
several other settings: A global increase in DNMT1 expression 
and DNA methylation in PBMCs was suggested as a biomark-
er for screening individuals at risk of developing Alzheimer’s 
disease (133). During lung inflammation, cardiolipin induced 
HDAC3-mediated deacetylation of the Il10 promoter, there-
by inhibiting resolution (134). A similar role was noted in ath-
erosclerosis, in which HDAC3 is upregulated in macrophages 
from ruptured atherosclerotic lesions and associated with 
inflammatory macrophages (135). Analysis of myeloid-specif-
ic Hdac3-knockout mice revealed this deacetylase as a posi-
tive regulator of arterial inflammation: deficient mice showed 
plaque stabilization resulting from reduced lipid accumulation 
and increased fibrosis via TGF-β in an atherosclerosis model 
(135). Resolution of arthritis is promoted by HDAC2’s interac-
tion with Tet2, leading to deacetylation and thus repression of 
the Il6 locus (82). HDAC3 inhibition also proved beneficial in 
spinal cord injury (136).

which activates the endothelial cell adhesion molecules VCAM-1 
and E-selectin by reducing repressive H3K27me3 promoter marks 
(104). NeST ncRNA interacts with the WDR5 subunit of histone 
H3K4 methylating complexes and induces IFN-γ expression by 
modifying chromatin at IFN-γ’s gene locus in CD8+ T cells (105). 
In CD4+ T cells, lincR-Ccr-5′AS is important for Th2 cell migration 
to the lung (100). Although ncRNAs are very abundant, their role 
during immune responses is only beginning to be understood.

Once acquired, epigenetic changes persist throughout cell 
divisions, enabling the maintenance of cell identity (106). How-
ever, responsiveness to environmental cues and reversibility of 
epigenetic landscapes permit plasticity in transcriptional programs 
of already differentiated cells. These features position epigene-
tic mechanisms as ideal molecular instruments for controlling 
immune cell activity, which must remain specialized in function 
but able to adjust response according to various environmental 
exposures. Unsurprisingly, genome-wide changes in DNA meth-
ylation, histone modifications, chromatin accessibility, ncRNA 
expression, and long-range chromatin interactions accompany 
immune cell development throughout hematopoiesis (56, 107, 108) 
as well as activation. While the role of epigenetics during develop-
ment, differentiation, and activation is well accepted (Figure 2B), 
much less is known regarding the resolution and repair phase of 
immune responses, for which we will highlight some recent find-
ings in cells of the innate and adaptive immune systems.

Epigenetic reprogramming in innate immune 
cells during injury
Tissue injury sensed by the immune system produces a concerted 
action of different immune cells. Tissue-resident immune cells are 
first responders to the insult, inducing proinflammatory signals to 
attract further circulating immune cells, such as monocytes and 
neutrophils. When the insult is cleared, inflammation must be 
counteracted, proinflammatory cells eliminated, further leukocyte 
recruitment abrogated, and tissue repair mechanisms supported — 
actions facilitated by specialized pro-resolving mediators (SPMs) 
that act on immune cells and surrounding tissues to restore homeo-
stasis (109). Failed resolution of damage and the associated acute 
inflammatory reaction lead to abscess formation, fibrosis, or chron-
ic low-grade inflammation and consequently further tissue damage 
(110). Macrophages not only initiate immune reactions in response 
to injury, but are equally important for their resolution, e.g., via 
production of antiinflammatory SPMs (111). While the epigenomic 
landscape of different immune cells and subsets under homeostasis 
and their changes following activation are well studied, the molec-
ular determinants of the retraction phase leading to resolution and 
repair are less explored. As tissue-resident macrophages critically 
impact local homeostasis (112, 113), signals present in their microen-
vironment, such as metabolites, mechanical signals, apoptotic bod-
ies, and cytokines, prime distinct transcriptional and epigenomic 
programs in different tissues, thereby imparting specific responses 
to danger signals (42, 113–116). For example, an NaCl-rich environ-
ment alters H3K4me3 at multiple loci in macrophages, promoting 
a proinflammatory phenotype by facilitating increased NO release 
upon LPS stimulation (117), as well as a decreased antiinflammatory 
phenotype through silencing of the Il4 and Il13 loci (118) — collec-
tively delaying wound repair under high-salt conditions.
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General targeting of DNA methylation or histone acetylation 
may pose risk for adverse effects due to systemic modulation of 
immune cell function and effects on other cell types. Targeting 
miRNAs that regulate a narrower subset of genes appears to be a 
more concise approach, though the pharmacokinetic properties 
of miRNA agonists remain challenging and are currently being 
addressed. Collectively, cell type–specific spatial and temporal 
clarifications of molecular processes and determinants of the 
inflammatory cascade upon injury are crucial for developing novel 
therapies, particularly when targeting epigenetic mechanisms.

Epigenetic modifications in macrophages remain on the verge 
of being unraveled. Their changes in the context of ontogeny and 
the influence of environment under homeostasis demonstrate 
their ample plasticity (112, 113). In contrast to simplistic monova-
lent in vitro stimulations, a future challenge will be integrating 
the effects of simultaneous exposure to all signals present in the 
tissue (114). Exploring spatial and temporal features of cell type–
specific epigenetic mechanisms during injury will be necessary to 
elucidate regulatory mechanisms in the involved cell types. Albe-
it technically challenging, the continuous fast-paced progress in 
epigenomic techniques will enable these kinds of studies soon.

Resolution of the acute inflammatory reaction upon injury 
involves a plethora of soluble mediators within the affected tis-
sue microenvironment as well as many different cell types whose 
capacity to respond to these mediators determines the outcome. 
Deciphering the layers of epigenetic regulation acting on respon-
sive receptors, signaling cascades, and effectors will be valuable 
for identifying repair-promoting therapies.

Since single-cell RNA sequencing (scRNA-Seq) methods 
became available, the elucidation of heterogeneity within differ-
ent tissue-resident immune cell populations has become a live-
ly field of investigation. Understanding of mechanisms at play 
during injury, documentation of the different immune cells pres-
ent, and distinguishing of subsets (e.g., resident vs. infiltrating 
myeloid cells) are pivotal. Notably, changes in the tissue micro-
environment during injury diversify the immune cell populations 
present: infiltrating cells may acquire markers of tissue-resident 
cells, and detailed knowledge of immune cell populations present 
during homeostasis and injury will be necessary to address ongo-
ing changes during this pathological process. Proper stratification 
is necessary to address the different contributions of different 
subpopulations to injury, particularly with regard to tissue repair, 
as well as to study underlying molecular mechanisms such as epi-
genetic modifications.

Epigenetic reprogramming of lymphocytes 
during injury
Although less is understood about the role of epigenetic mecha-
nisms within lymphocytes during later phases of injury, particu-
larly the repair and resolution phases, lymphocytes’ roles during 
wound healing are well appreciated (137, 138). T cells are clearly 
present at sites of injury (139–141), and depending on the tissue 
and T cell subsets, they can have positive or negative effects on 
tissue regeneration. Generally, γδT cells, innate-like lymphocytes 
(ILCs), and Tregs positively influence tissue repair, while helper 
and cytotoxic T cells can delay fracture healing by secreting IFN-γ 
and TNF-α cytokines, which inhibit osteogenesis (142, 143). On 

the other hand, recent studies show a protective role of T cells in 
CNS injury (144), acute kidney injury (145), myocardial infarction 
(146), and muscle repair (137). Type 1 T helper (Th1) cells promote 
inflammation, whereas Th2 cells have antiinflammatory effects 
and contribute to recovery from injury. Differentiation of naive 
T cells toward these subsets requires T cell receptor engagement 
followed by epigenetic mechanisms. Effector cells deficient in the 
H3K27me3 methyltransferase EZH2 do not protect from Toxo-
plasma gondii infection and can drive autoimmune colitis (147). 
Conversely, during renal or bone marrow transplantation, EZH2 
inhibition ameliorates allograft rejection and reduces injury by 
suppressing cytokine production and inducing alloreactive T 
cell apoptosis (148, 149). It remains unclear which receptors are 
involved in injury-induced T cell activation, especially during 
sterile inflammation such as ischemia wherein cognate antigen 
is absent. T cell activation at injury sites unlikely resembles naive 
T cell differentiation or encompasses similar epigenetic changes, 
which has started to be addressed only recently (150). Cytotoxic 
Tc17 and helper Th17 cells induced by Staphylococcus epidermid-
is fight the infection by producing IL-17 but also possess wound 
healing potential due to their poised type 2 immunity program. 
They have the capacity to produce high levels of the type 2 cyto-
kines IL-5 and IL-13, as they hold opened chromatin for these gene 
loci and low levels of the corresponding transcripts (150). Col-
lectively, Tc17 cells generated during S. epidermidis colonization 
improve skin wound healing in an IL-13–dependent manner (150). 
It is therefore possible that T cells, especially tissue-resident ones, 
acquire poised epigenetic signatures upon encounter with an anti-
gen, allowing for the appropriate cytokine production upon injury.

γδT cells constitute a major lymphocyte population in muco-
sal tissues and skin. Upon cutaneous damage, they are one of the 
first cellular components mobilized in response to stress signals, 
secreting soluble factors that attract further inflammatory cells 
but also directly stimulating epithelial cell proliferation by mito-
gens such as the keratinocyte growth factors IGF-1 (151), FGF-7, 
and FGF-10 (152, 153). Lung-resident γδT cells produce IL-22, 
which prevents fibrosis (154), and γδT cells in bone secrete IL-17A, 
accelerating osteogenesis during fracture healing (155). Whether 
γδT cells produce IFN-γ or IL-17 is largely decided during thymic 
development. Very few γδT cells leave the thymus as non–pre-pro-
grammed cells with the potential to be instructed by peripher-
al environmental cues (156). The capability to produce either 
IFN-γ or IL-17A, IL-17F, and IL-22 is encoded in the chromatin 
structure. IFN-γ–producing CD27+ γδT cells show enrichment of 
suppressive H3K27me3 marks at the Il17a, Il17f, and Il22 loci and 
enrichment of H3K4me2 at the Ifng locus, while IL-17–producing 
CD27– γδT cells possess Il17a, Il17f, and Il22 loci in a poised state 
with H3K27me3 and H3K4me2 present (157). Although one may 
conclude that epigenetic reprogramming of γδT cells in the periph-
ery is limited, regulating γδT cell function during injury can still be 
an important process that needs further investigation in a spatio-
temporal fashion during all phases of injury to better understand 
the role of these important immune cells during injury.

Uncontrolled inflammation after tissue damage can impair 
tissue healing and regeneration, as happens in chronic ischemic 
heart failure (158, 159). Tregs at the injury site can ease resolution of 
inflammation by facilitating repair of many tissues, including bone 
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(142), skin (160), lungs (161, 162), kidney (163, 164), CNS (165), and 
skeletal (141) and cardiac muscles (166). During injury, Tregs mod-
ulate neutrophil behavior (161), influence monocyte/macrophage 
activation toward an antiinflammatory phenotype (167), and reduce 
lymphocyte production of the proinflammatory cytokines TNF-α 
and IFN-γ (142). Tregs can also directly affect wound healing by pro-
ducing growth factors such as amphiregulin (141), which promotes 
tissue regeneration. Because DNA methylation plays an important 
role in regulating Foxp3 expression, it may also affect tissue repair 
and resolution processes. Indeed, the DNMT inhibitor 5-aza-29- 
deoxycytidine (DAC) accelerates resolution of experimental lung 
injury at least partially via a salutary effect on Tregs. DAC treatment 
increases Treg numbers and function in the wounded lung (168). 
Clearly, further work is necessary to precisely understand which 
epigenetic mechanisms operate in Tregs and therefore might be 
targeted therapeutically to foster tissue repair and resolution.

Presence of ILCs also appears beneficial for restoring tissue 
homeostasis after injury (169). Depletion of type 2 ILCs, which 
are responsive to IL-33, impaired wound healing in the lung after 
influenza infection (170) and in corneal tissues after corneal epi-
thelial abrasion (171). ILCs acquire specific chromatin modifica-
tions during development, rendering stimulation-inducible genes 
poised for expression. Neither in vitro nor in vivo stimulation 
seems to affect chromatin accessibility in ILCs (172, 173). How-
ever, the microbiome influences the epigenetic landscape of dif-
ferent ILC subgroups (173). Clearly, the role of epigenetic changes 
within individual ILC populations in response to tissue damage 
remains to be determined.

Collectively, while the role of lymphocytes during injury is 
becoming more explicit, the epigenetic events occurring during 
later phases of the immune response to tissue damage are large-
ly unknown, particularly regarding epigenetic reprogramming of 
lymphocytes. Based on the few data available, it is tempting to 
speculate that cells involved in tissue repair including γδT cells, 
Tc17 cells, and ILCs acquire their healing potential through repro-
gramming at the chromatin level before the injury happens. It is 
also critical to address the role of epigenetic mechanisms during 
the late repair and resolution phases. First attempts to look into the 
role of epigenetics in this process remain very limited. Although 
epigenetic inhibitors have already been tested as potential strate-
gies for improving wound healing processes (148, 149, 174), a bet-
ter understanding of epigenetic events involved in tissue repair is 
necessary to develop precision medicine strategies.

Integrated view on injury including repair and 
resolution
During the body’s reaction toward an injury, immune cells act 
in a system-like fashion, involving many different immune cell 
types throughout the process (3, 175, 176). Different dimensions of 
interactions must be considered. On the population level, genet-
ic variation can impact molecular mechanisms involved in repair 
and resolution processes (Figure 3). In this context, the analysis 
of quantitative trait loci (QTL), particularly expression QTL and 
epigenetic QTL, can shed light on an individual’s genetic and envi-
ronmental susceptibility to dysregulation in different phases of the 
injury response (177). Furthermore, each individual’s exposure to 
a myriad of environmental stimuli throughout life results in epi-

genetic modifications that add another important layer on top of 
the genetic code explaining disease susceptibility and outcome. 
Because every immune cell type reacts in a time-resolved fashion 
during the different phases after injury, single-cell technologies 
that define transcriptional and epigenetic changes are becoming 
more and more important (178–180). Furthermore, because epi-
genetic regulation occurs on several levels, multi-omics approach-
es are required to simultaneously interrogate major regulatory epi-
genetic and transcriptional mechanisms during injury, repair, and 
resolution (Figure 3 and refs. 181, 182). So far, single-cell methods 
such as scATAC-Seq (183), scDNase-Seq (184), and scMNase-Seq 
(185) have not been applied to address the processes during repair 
and resolution of injuries. Unsurprisingly, we are far from being 
able to assess population, individual, organ, tissue, single cells, 
time, and multi-omics dimensions to develop an integrated view of 
the pathological processes.

Using myocardial infarction (MI) as a very prominent exam-
ple of injury, as the world’s leading cause of death (186), we will 
now illustrate how an integrated view might be envisioned for 
future research. Recent work has clearly established the inter-
play between local immune cells, particularly myocardial tissue 
macrophages, and immigrating immune cells such as neutrophils 
and monocytes during MI (175). On the genetic level, over 50 loci 
identified in the last decade are associated with increased risk for 
coronary artery disease (CAD) and MI (187). The large majority of 
these loci are located in noncoding parts of the genome, making 
epigenetic regulation of transcription rather than protein struc-
ture more likely to be influenced. A very prominent susceptibil-
ity locus for CAD/MI at chromosome 9p21 was initially linked 
to the two closest protein-coding genes, CDKN2A and CDKN2B 
(188). However, more recent studies illustrate the requirement to 
infer causality from genetic variation studies (189–191). It is now 
established that the risk and nonrisk alleles at this locus code for 
different isoforms of the lncRNA ANRIL, resulting in differential 
epigenetic functionality of this lncRNA and ultimately modulat-
ing the expression of multiple genes (192).

Several epigenetic mechanisms, including DNA methyla-
tion and histone modifications, are linked to aberrant cardiac 
wound healing (193, 194), although current knowledge is most-
ly based on studies assessing epigenetic changes on the tissue 
level rather than the cell type level. For example, patients with 
end-stage heart failure show global reduction of DNA methyla-
tion in CpG islands, and some of these epigenetic changes are 
associated with dysregulated expression of genes implicated in 
angiogenesis (195). Similarly, alterations in histone methylation 
were observed in human heart failure (196), yet these studies 
do not address epigenetic changes in individual immune cell 
subsets involved in heart injuries. Indeed, very little is known 
about epigenetic changes in immune cell subsets during heart 
failure or other heart injuries. Treating rats with the DNMT 
inhibitor 5-azacytidine reduced macrophage number after MI, 
and the remaining macrophages had a more antiinflammatory 
phenotype (197). Histone modifications are implicated in mac-
rophage reprogramming (114, 198) but have not been studied in 
great detail in the context of MI or other heart injuries in vivo, 
certainly not in an integrated fashion at the cell type or even 
the single-cell level. A comparison of the transcriptional regula-
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changes in all immune cells involved in the process to allow for a 
proper restoration of tissue homeostasis following the acute inflam-
mation upon injury. As we have only begun to understand the many 
different epigenetic mechanisms that exist, it is not surprising that 
our picture of epigenetics’ role in later phases of injuries, namely 
repair and resolution, remains mostly incomplete. Profound knowl-
edge about the different tissue-resident and patrolling immune cell 
populations and subsets present under homeostatic conditions is a 
prerequisite to understand pathophysiological processes. Single-cell 
technologies are currently paving the way to decipher and describe 
immune cell populations at unprecedented levels, enabling isola-
tion and characterization of rare cells on an epigenetic level. Tech-
nological limitations of many epigenetic assays concerning the 
quantity of necessary input material have prohibited detailed stud-
ies of these processes during injury. Yet we strongly believe that it 
will be rather rewarding to complete these studies, as the decision 
between tissue resolution after injury versus chronic low-grade 
inflammation, development of fibrosis, or generation of abscesses 
as second-best options is certainly affected and modulated by dis-
tinct epigenetic regulatory mechanisms. The conditions and fac-
tors present in injured tissue are influential, but it is also becoming 
clear that genetic variability, age, and environmental influences can 
leave their epigenetic mark and influence injury susceptibility and 
outcome. Revealing these specific epigenetic switches in defined 
immune cell subsets will bring us closer to targeted therapies for 
many of the pathophysiological conditions following injuries, and 
these epigenetically motivated therapies might form the basis of 
precision medicine for related chronic illnesses.
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tion of repair mechanisms within adult and neonatal mamma-
lian hearts suggested that both adult and neonatal immune cell 
compartments express a proliferative gene expression network 
following MI. In contrast, adult cardiomyocytes are unable to 
reactivate the network of proliferative genes expressed in neo-
natal cardiomyocytes following MI (199). An integrated view on 
transcriptional regulation and genome-wide chromatin acces-
sibility landscapes in cardiomyocytes after MI reveals that loci 
required for entering the cell cycle are characterized by a closed 
chromatin landscape. This allows neonatal cells to repair MI 
without leading to scar formation, which is the major option for 
resolving the injury in adults. While this study reveals important 
epigenetic and transcriptional regulatory mechanisms influenc-
ing post-MI repair and resolution mechanisms on the cell type 
level, we must consider further heterogeneity within individual 
cell types during all phases of injury. scRNA-Seq technologies 
are well suited to address such heterogeneity, even in a spatio-
temporal fashion (179, 180). Applied to MI, functionally defined 
cellular states within the myeloid compartment are recognized 
in infarcted tissue (200). Combined with fate-mapping technol-
ogies, immunofluorescence studies, and temporal kinetics of 
individual subpopulations, a picture of differential functionality 
within the myeloid cell compartment during the different post-
MI phases evolves. The earliest phases involve functional chang-
es in local tissue macrophages, leading to an influx of neutrophils 
and monocytes that promote an inflammatory reaction. These 
cells are replaced at later time points by subsets characterized by 
classical repair mechanisms (178, 200). Particularly surprising 
within these studies is the functional heterogeneity of immune 
cells during the different phases of an injury such as MI. Under-
standing these distinct functional states within the myeloid com-
partment allows targeting of particular subpopulations to manip-
ulate the natural history of the disease (180, 200). For example, 
depleting resident macrophages after infarct worsens cardiac 
function, indicating that protecting these cells from depletion 
might be a potential therapeutic concept. Clearly, we must fur-
ther evaluate the predicted functionality of all the newly iden-
tified functional states and link these transcriptional changes to 
epigenetic regulation that also might be targeted therapeutically.

Outlook and summary
Epigenetic regulatory mechanisms are very dynamic and confer 
numerous options for any single cell to react to changes in its micro-
environment, be they homeostatic or pathophysiological. Injuries, 
with their different phases, require well-orchestrated epigenetic 
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