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Introduction
Acute, repeated, and chronic injuries lead to organ dysfunction. 
In the aftermath of injury, tissue repair and regeneration are 
essential to restoring organ homeostasis, and defective or insuf-
ficient repair mechanisms can lead to permanent organ dysfunc-
tion. Tissue repair is an active, complex, and highly regulated 
process, and tissue response to injury involves a well-studied 
inflammatory response characterized by influx of immune cells 
and their activation. However, much less is known about the role 
of inflammation and the immune system in repair. The impor-
tance of inflammation in repair is highlighted by observations 
that glucocorticoid use, which inhibits immune responses, also 
impairs repair (1). Moreover, a timely resolution of inflammation 
is required for repair (2).

T lymphocytes are pivotal for the maintenance of adap-
tive immune responses, including recognition of pathogens, 
allergens, and tumor antigens. Moreover, although T lympho-
cytes coordinate and maintain immunological memory and 
self-tolerance, they have also been linked to inflammatory and 
autoimmune diseases (3). For instance, type 2 immune cells 
involved in allergic inflammation or parasitic infection can 
also regulate tissue repair (4, 5). Interplay between immune 
cells (macrophages, type 2 innate lymphoid cells, T cells, etc.) 
and nonimmune cells (fibroblasts, epithelial cells, endothelial 
cells, stem cells, etc.) helps to direct their responses to environ-
mental cues, as well as epigenetic and metabolic reprogram-
ming during tissue repair. This Review will focus on the major 
populations of reparative T cells, describe their role in specific 
contexts, and present approaches to harness them to enhance 
tissue repair (Figures 1 and 2).

CD4+Foxp3+ Tregs
Regulatory T cells (Tregs) have emerged as critical orchestrators 
of resolution of inflammation. These T cells can mediate repair by 
dampening inflammation, by modulating other important repair 
cells such as macrophages, and by synthesizing pro-repair mol-
ecules such as amphiregulin (AREG) or keratinocyte growth fac-
tor (KGF) that directly promote tissue regeneration. In humans 
and in mice, Tregs constitute 5% to 10% of the total CD4+ pool, 
or 1% to 2% of peripheral blood lymphocytes. Despite their rela-
tively low frequency, Tregs are among the master regulators of 
the immune system, with established roles in immune tolerance, 
homeostasis, and inflammation (6, 7). Treg relevance is highlight-
ed by descriptions of humans who carry mutations in the master 
transcription factor forkhead box P3 (FOXP3) and exhibit massive 
multisystem inflammation and autoimmunity (immunodysregula-
tion polyendocrinopathy enteropathy X-linked syndrome, or IPEX 
syndrome) (8–10). A murine counterpart with severe, generalized 
autoimmunity has been described in scurfy mice (11).

Foxp3 is currently the best available marker to identify Tregs, 
although it can also be transiently expressed in human activat-
ed conventional T cells (12). A combination of CD3+CD4+CD127lo 

CD25hiFoxp3+ is often used to discriminate human Tregs from acti-
vated conventional T cells (13). Natural or thymus-derived Tregs 
(tTregs) can be distinguished from induced/adaptive or peripherally 
derived Tregs (pTregs). pTregs can be induced from CD4+ conven-
tional T cells by antigenic T cell receptor (TCR) stimulation with 
low-dose/high-affinity ligands, suboptimal costimulation, and medi-
ators including TGF-β1, IL-2, and retinoic acid (14–16). Helios and 
neuropilin-1 are enriched in tTregs compared with pTregs (17, 18), 
but caution should be used to discriminate the Treg population when 
inflammation or overt T cell activation is present. Another difference 
is that CpG motifs in conserved noncoding DNA sequence 2 (CNS2), 
a Treg-specific demethylated region, are demethylated in tTregs, 
but not in pTregs (19). In contrast, CNS1 at the Foxp3 locus has an 
important role in pTreg generation, while CNS3 has potent effects in 
increasing Treg frequency in the thymus and the periphery (16).

Acute organ injuries such as acute cerebrovascular accidents, myocardial infarction, acute kidney injury, acute lung injury, 
and others are among the leading causes of death worldwide. Dysregulated or insufficient organ repair mechanisms 
limit restoration of homeostasis and contribute to chronic organ failure. Studies reveal that both humans and mice 
harness potent non-stem cells that are capable of directly or indirectly promoting tissue repair. Specific populations 
of T lymphocytes have emerged as important reparative cells with context-specific actions. These T cells can resolve 
inflammation and secrete reparative cytokines and growth factors as well as interact with other immune and stromal 
cells to promote the complex and active process of tissue repair. This Review focuses on the major populations of T 
lymphocytes known to mediate tissue repair, their reparative mechanisms, and the diseases in which they have been 
implicated. Elucidating and harnessing the mechanisms that promote the reparative functions of these T cells could 
greatly improve organ dysfunction after acute injury.
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Secretion of immunosuppressive molecules. Tregs can produce the 
antiinflammatory molecules IL-10, TGF-β1, and IL-35, with highly 
variable mechanisms that can be context-specific. In asthma mod-
els, Treg-induced IL-10 production by CD4+ effector T cells sup-
pressed allergic inflammation, although the mechanism did not 
require IL-10 expression in Tregs themselves (31). In other stud-
ies, Treg-derived IL-10 was shown to control lung allergic inflam-
mation (32). In contrast, Treg-derived IL-10 was not necessary to 
resolve lung injury caused by intratracheal lipopolysaccharide (33). 
Models of renal ischemia/reperfusion and colitis show important 
roles for production of IL-10 by Tregs (34, 35). The importance 
of TGF-β1 production by Tregs is controversial; however, mem-
brane-tethered TGF-β has been shown to be immunosuppressive 
in both allergic and autoimmune diseases (36, 37). IL-35 has been 
shown to have robust Treg suppressive function in vitro and in vivo 
and can generate a suppressive population of pTregs (38).

Secretion of pro-repair mediators. Treg-derived AREG, an EGFR 
ligand, has been shown to exert potent reparative function in mod-
els of muscle injury (39), influenza-induced lung injury (40), and 
colitis (41). Several mediators can induce AREG, including IL-33, 
cAMP, insulin-like growth factor-1 (IGF-1), TGF-β, and prostaglan-
din E2 (42, 43), each of which contributes to rapid upregulation 
of AREG during inflammation/injury. In contrast to other EGFR 
ligands, AREG can induce both mitogenic and cell differentiation 
signals, placing AREG at center stage in coordination of tissue 
homeostasis and epithelial repair after injury (43). KGF secreted 

The importance of Tregs in self-tolerance and maintenance of 
immune homeostasis has been well established, with an emerg-
ing literature demonstrating that Tregs harness potent pro-repair 
functions in a wide range of immune and nonimmune diseases 
(Table 1). Tregs can exert their pro-repair function in different 
organs and diverse contexts (Tables 2 and 3). Treg pro-repair 
mechanisms can include one or more of the following (Figure 1):

Contact-dependent modulation of effector cells. Tregs can damp-
en immune responses and thus limit overt inflammation to pro-
mote a reparative milieu. Among the contact-dependent mech-
anisms, expression of high levels of inhibitory receptors (e.g., 
CTLA-4, LAG-3) can downregulate costimulatory molecules on 
dendritic cells (DCs) (20–22). Tregs can also downregulate the 
costimulatory molecules CD80 and CD86 in DCs and promote DC 
production of indoleamine 2,3-dioxygenase, a potent immunosup-
pressive enzyme, which in turn results in suppression of effector 
T cells (23, 24). Treg-driven metabolic disruption involves both 
apoptosis mediated by CD25-dependent cytokine deprivation 
(25) and immunosuppression mediated by CD39/CD73-generated 
cAMP via the adenosine–purinergic adenosine A2A receptor (26, 
27). While granzyme-induced cytolysis is a key mechanism for NK 
cells and cytotoxic CD8+ T cells, Tregs can also express granzymes, 
which have been shown to be important in controlling respiratory 
syncytial virus–induced lung inflammation (28), in preventing gas-
trointestinal graft-versus-host disease (GvHD) (29), and as a mech-
anism underlying self-induced apoptosis after activation (30).

Figure 1. Roles for Treg subsets in repair. Conventional Tregs, CD8+ Tregs, and TR1 cells can directly influence repair processes by secreting pro-repair media-
tors. Conventional Tregs and TR1 cells also regulate other immune processes at the site of injury.
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Modulation of stem cells. Tregs’ pro-repair functions suggest 
that they may influence tissue-specific stem cell functions. In a 
model of epithelial regeneration, Tregs were shown to promote 
hair follicle stem cell differentiation (58). Future work will be 
needed to determine how Tregs interact with niche-specific stem 
cells in organ repair.

Intense efforts have been made to use Tregs as immunother-
apy for autoimmune diseases and solid organ transplantation, 
with ongoing trials for type 1 diabetes mellitus (NCT02691247; 
ClinicalTrials.gov) and GvHD (NCT01937468). Although 
phase I trials using polyclonal Tregs have demonstrated safety 
to date, there are unique challenges to developing these thera-
pies, including improving the isolation, expansion, purity, stabil-
ity, potency, and specificity of Tregs (59). It is anticipated that 
indications for Treg immunotherapy will expand to include oth-
er conditions in which unremitting inflammation or persistent 
organ damage exists. It has been proposed that chimeric antigen 
receptors (CARs) or antigen-specific Treg TCRs engineered for a 
specific organ or disease could be developed as the next genera-
tion of cell immunotherapy (60).

Adoptive transfer of expanded Tregs requires time, making 
them an impractical option during the acute phase of organ inju-
ry. Repurposing approved drugs to expand and promote endog-
enous Tregs represents an alternative option. IL-2/anti–IL-2 
complex, IL-33 agonists, mTOR inhibitors (e.g., rapamycin), 
and DNA methyltransferase inhibitors (e.g., decitabine, azacit-
idine, etc.) can promote Treg expansion, resolve inflammation, 
and enhance organ repair (61, 62). In addition, autologous Treg 

by activated Tregs has also been shown to be an important factor in 
promoting alveolar epithelial repair after lung injury (44). Tregs can 
also promote angiogenesis (45, 46), possibly through enhancement 
of VEGF production by other cells, as Treg production of angiogenic 
factors has not been described to date. An additional factor secreted 
by Tregs is IL-4, which can induce alternative activation and pro-
mote a reparative phenotype in human macrophages (47).

Modulation of stromal cells. Tregs can modulate stromal cells 
to promote repair. Stromal/Treg signaling via the IL-33/ST2 
axis has been reported to expand Tregs in injured lungs, muscle, 
colon, and liver (48–50). Tissue injury leads to release of alarm-
ins, among them IL-33, which can stimulate Tregs through their 
receptor, stimulation-2 (ST2). IL-33–stimulated Tregs upregulat-
ed reparative AREG production by ST2+ Tregs, contributing to 
the reprogramming of infiltrating macrophages to a pro-repair 
phenotype (51, 52). IL-33/ST2 signaling can mediate tissue-re-
parative functions in the resolution phase after injury in different 
organ systems, although it may play pathological roles in type 
2 diseases such as skin and lung allergic pathologies (53–55). 
Moreover, Treg contact–dependent and –independent cellu-
lar interactions with epithelial, endothelial, fibroblast, or other 
stromal cells can mediate their reparative effector functions. 
The complexity of Tregs orchestrating repair is highlighted by 
the migration of these cells to inflamed lungs, where they mod-
ulate alveolar macrophage proinflammatory responses, enhance 
neutrophil clearance by macrophage efferocytosis, and balance 
effector Th1/Th17 responses while promoting epithelial and 
endothelial proliferation (33, 40, 56, 57).

Figure 2. Roles for other T cell subsets in repair. γδ T cells, Th22 cells, and DN T cells influence immunity and repair at the site of injury via a variety of mechanisms. 
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TR1 cell–based therapeutics have faced some challenges. 
They can secrete Th1/Th2 cytokines but have limited clonal 
expansion ability, likely due to the autocrine effects of IL-10. 
Culturing TR1 cells in the presence of dexamethasone and vita-
min D3 can facilitate differentiation into a regulatory phenotype 
(72). Their reduced clonal expansion can be overcome by culture 
in the presence of either IL-10–producing DCs, IL-27, or aryl 
hydrocarbon receptor (AHR) agonists (73). Although TR1 cells 
can modulate immune responses primarily by their production 
of IL-10 and TGF-β, we speculate that these cells have import-
ant reparative mechanisms by modulating other cells involved 
in regeneration. IL-10 has been shown to modulate macrophage 
phenotype and promote muscle growth and regeneration (74), it 
mediates mucosal repair by epithelial WNT1-inducible signaling 
protein (75), and promotes wound healing via fibroblast/STAT3 
signaling. Although IL-10 has been administered to patients 
with inflammatory bowel disease (IBD) and proven to be safe. 
However, patient outcomes have been disappointing. The short 
half-life of IL-10, subtherapeutic doses at mucosal surfaces after 
systemic administration, and variability between individuals in 

function could be enhanced ex vivo for a shorter duration in the 
presence of these “Treg enhancers” and adoptively transferred 
back to the host to achieve their pro-repair functions (63).

Type 1 regulatory T cells
Type 1 regulatory T cells (TR1) are a CD4+ population that was 
initially found to suppress antigen-specific responses to prevent 
colitis (64). TR1 cells differ from tTregs by their lack of Foxp3 
expression and CD25. Both human and mouse TR1 cells express 
lymphocyte activation gene-3 (LAG-3) and CD49b (65). They 
can express high levels of regulatory molecules such as OX40 
(CD134), glucocorticoid-induced tumor necrosis factor recep-
tor (GITR) (66), and inducible T cell costimulator (ICOS) (67).

TR1 cells’ mechanisms of action include suppression of T cell 
and antigen-presenting cell (APC) responses via secretion of IL-10 
and TGF-β (64, 68), death of myeloid APCs via secretion of gran-
zyme and perforin (69), immunomodulation of DC–T cell inter-
actions via secretion of coinhibitory molecules such as CTLA-4, 
PD-1, and ICOS (70), and production of adenosine through the 
hydrolysis of ATP by CD39/CD73 expression (71).

Table 1. T cell types involved in tissue repair and their markers and functions

Treg populations Markers Functions
Conventional Tregs

tTregs and pTregs CD4+CD25+Foxp3+→CD3+CD4+CD127loCD25hiFoxp3+ 
discriminates human Tregs from activated conventional 
T cells (13)

Repair (see Tables 2 and 3)

Control (suppress) immune responses including self-antigen tolerance and prevent 
autoimmune disease (122, 123)

Regulation of immune responses (124) in: tumor immunity (125), allergy (126),  
transplant rejection (127), infections (128)

Other Treg subtypes (selection)

CD8+ Tregs CD8+CD28–/lo/+ Repair (see Tables 2 and 3)

CD8+CD122+ (mouse)/CD8+CXCD3+ (human) Maintain immune homeostasis/tolerance and inhibit autoimmune disease (129, 130)

Qa-1–restricted CD8+ (mouse)/HLA-E (human) In cancer: inhibit immune responses (116)

Foxp3– Tregs TR1→CD4+CD49b+LAG-3+ (65) Repair (see Tables 2 and 3)

Induce and maintain antigen tolerance

Control (suppress) immune responses: GvHD (131), autoimmunity (73),  
tissue inflammation (73), transplantation (77)

Other reparative T lymphocyte populations
IL-22+CD4+ T cells (Th22 cells) IL-22 Repair (see Tables 2 and 3)

Differentiated from Th cells by absence of IFN-γ,  
IL-5, and IL-17

Protect against infections (with exceptions) (80, 132)

Role in cancer initiation and progression (with exceptions) (85, 92)

Protective and pathogenic role in autoimmune disease (133)

Double-negative (DN) T cells CD4–CD8–, αβ TCR+ Repair (see Tables 2 and 3)

There is no specific marker for DN T cells. Other DN 
populations are also described, e.g., DN γδ T cells, 
DN NKT cells, DN Tregs

Immune regulation and tolerance: graft tolerance (96), antitumoral potential (98), 
autoimmunity (97)

Exceptions: IL-17–producing DN T cells in SLE (99), IL-17– and IL-23–producing DN T cells  
in bacterial infection (134)

γδ T cells TCR consists of γ chain and δ chain Tissue homeostasis and repair (ref. 108 and see Tables 2 and 3)

Different oligoclonal or monoclonal populations Located in surface epithelia/mucosa (104)

Cancer immune response (pro- and antitumor effects) (135)

Infection defense (136)

SLE, systemic lupus erythematosus.
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antimicrobial peptides important in host defense in the skin, air-
ways, and intestine (82). Additionally, IL-22 can promote wound 
healing by enhancing epithelial migration, differentiation, and 
proliferation, in part by inducing antiapoptotic molecules (Bcl-2, 
Bcl-xL) and cell cycle and proliferation proteins (c-Myc, cyclin D1, 
CDK4) (84–86). IL-22’s roles in wound healing (87), pancreatic β 
cell and liver regeneration (88, 89), protection against lung and liv-
er fibrosis (90, 91), and other functions underscore its widespread 
importance in tissue protection and repair. However, dysregulated 
and uncontrolled expression of IL-22 can lead to chronic inflam-
mation and contribute to tissue damage, as seen in psoriasis and 
atopic dermatitis, and has been linked with the development of 
several types of neoplasia (92).

A placebo-controlled study to evaluate safety, tolerability, 
immunogenicity, and pharmacokinetics of intravenous IL-22Fc 
(an antibody-modified IL-22 fusion protein registered under the 
name UTTR1147A; NCT02749630) in healthy volunteers, IBD 
patients, and gastrointestinal GvHD patients (NCT02406651) is 
under way. Conversely, trials of IL-22 antibody blockade are ongo-
ing for psoriasis and atopic dermatitis (NCT01941537).

CD4–CD8– double-negative αβ T cells
CD4–CD8– double-negative (DN) αβ T cells are an unconven-
tional subset of T cells with increasingly recognized antiin-
flammatory and pro-reparative potential. DN T cells can be 
found in peripheral blood and lymphoid organs in relatively 
small numbers. However, they represent a substantial fraction 

IL-10 receptor or signaling pathway polymorphisms are among 
possible explanations for the lack of IL-10 efficacy (76).

Therapeutic benefits of TR1 have been shown in models of 
colitis, transplantation, and GvHD (64, 77), underscoring the need 
for IL-10–producing cells and not merely the antiinflammatory 
cytokine. Administration of antigen-specific TR1 cells to refracto-
ry Crohn’s disease patients has been reported to be well tolerated 
with dose-related efficacy (78).

CD4+IL-22+ cells
IL-22 can be produced by several immune cells, including CD4+ 
T cells (Th22 cells), innate lymphoid cells (ILC2 cells), and, less 
commonly, γδ T cells, natural killer T cells (NKT cells), and CD8+ 
T cells (79). IL-22 is unique among cytokines, because it is secret-
ed by immune cells, but its action occurs primarily in nonimmune 
epithelial cells and fibroblasts that express the IL-22 receptor 
(IL-22R1) (80). CD4+ Th22 cells require RORγt and AHR expres-
sion, and they also express CCR10 and CCR4, which can direct 
them in the skin (81). Other CD4+ populations that can secrete 
IL-22 include Th1 and Th17 cells (82). The latter express CCR6 
and CCR4 and can be found in the intestine, lung, and skin.

IL-22 displays potent protective and reparative functions. It 
has been well studied in mucosal barriers in the lungs and gastro-
intestinal tract for its role in protection against bacteria, viruses, 
and parasites (83). IL-22 plays a role in barrier integrity during 
invasion of pathogens: IL-22 can work synergistically with other 
cytokines such as IL-17 to promote the production of endogenous 

Table 2. Selection of T cell reparative roles in CNS, heart, lung, and kidney models of injury

Organ Model Cell type Comment on mechanism (reference)
CNS Cuprizone-induced demyelination Tregs Promoted oligodendrocyte differentiation and myelin regeneration via CCN3 (137)

Spinal cord contusion Tregs Promoted M2 macrophages (138)

Middle cerebral artery occlusion CD8+ Tregs IL-10–producing B cell treatment generated a dominant IL-10+CD8+CD122+ Treg population that reduced 
inflammatory response in brain (118)

Heart Myocardial infarction Tregs CC5R-induced Treg recruitment (139)

CD39-dependent cardioprotection (140)

Induced M2-like macrophage differentiation that promoted wound healing (141)

Lung LPS-induced ALI Tregs Decreased macrophage proinflammatory responses and increased efferocytosis (33, 142); CD73+ Tregs promoted 
adenosine-mediated resolution (143); Tregs inhibited fibrocyte recruitment via CXCL12 reduction (144)

H5N1 infection Treg-derived AREG protected against tissue damage (40)

LPS or left-lung pneumonectomy Treg-derived KGF increased lung epithelial cell proliferation (44)

ALI and cell culture Treg-derived AREG or CD103 increased proliferation of damaged type II AECs and promoted their differentiation 
into type I AECs (56)

ALI (H5N1 infection) CD8+ Tregs IL-10+Foxp3+CD8+ T cells decreased CD8+ effector T cell responses (119)

ALI (Klebsiella pneumoniae infection) Th22/IL-22+ T cells In bronchial/tracheal epithelium, IL-22 increased expression of G-CSF, AMPs, lipocalin 2, CXCL5,  
polymeric Ig receptor, and mucin 1 (79, 145)

ALI (LPS injection) γδ T cells γδ T cell–derived IL-4 regulated proinflammatory M1 macrophage expansion via TNF-α (146)

Kidney IRI-induced AKI Tregs Tregs increase IL-10 (35); CD73+ Tregs provided adenosine-mediated protection (147); PD-L1 and PD-L2 
protected from IRI (148); anti–CTLA-4 suppressed Treg-mediated protection (149); antagonists of P2X7R ATP 
receptors ameliorated AKI (150)

Cisplatin-induced nephrotoxicity Tregs decreased TNF-α and IL-1β (151)

IRI-induced AKI DN T cells DN T cells ameliorated ischemic kidney injury and expanded after ischemia, increasing IL-10 and IL-27 (100)

ALI, acute lung injury; AEC, alveolar epithelial cell; AKI, acute kidney injury; AMP, antimicrobial peptide.
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in nonlymphoid tissues, e.g., lung, liver, and kidney (93), and 
can be detected in high numbers in mucosal tissue, e.g., gut epi-
thelia (94) and female reproductive tract (95). Their potential 
in immune regulation has been described in various settings: 
graft tolerance (96), autoimmunity (97), and cancer (ref. 98 
and Table 1). The predominant antiinflammatory mechanisms 
ascribed to DN T cells are secretion of IL-10 (97) and cytolysis 
by granzymes and perforins (98). However, in systemic lupus 
erythematosus, IL-17–producing DN cells have been associated 
with an adverse effect (ref. 99 and Table 1).

In mouse kidneys, a large proportion (~25%) of T cells are 
DN αβ T cells, which are also prominent in human kidneys, but 
to a lesser extent. Two different types of renal DN αβ T cells 
have been described: an MHC-independent programmed cell 
death protein-1 receptor+ (PD-1+) subset and an MHC class I–
dependent NK1.1+ subset. DN αβ T cells ameliorate ischemic 
kidney injury and expand after ischemia. More specifically, the 
PD-1 subset is highly responsive under ischemia/reperfusion 
injury (IRI) conditions (100, 101).

IL-2 is required for DN αβ cell activation and function as well 
as DN αβ cell proliferation during the steady state (101). In vitro T 
cell function is suppressed by DN αβ T cells (100). Additionally, 
kidney-resident DN αβ T cells showed sizable expression of the 
antiinflammatory cytokines IL-10 and IL-27 in steady state at the 
mRNA and protein levels. Three hours after IRI, an increase of 
IL-10 and a decrease of IL-27 were found (ref. 100 and Table 2).

Other data suggest an aggravation of inflammatory processes 
by DN αβ T cells. In a stroke mouse model, DN cells were found 
to cause an exacerbation of ischemic brain injury (102). Howev-
er, this study did not distinguish different DN T cell subtypes, so 
the analyzed population might not be limited to DN T cells with αβ 
TCR. To date, no specific marker has been found for DN T cells, 
which makes it difficult to compare different studies and easy for 
results to be misinterpreted owing to possible contamination of 
other immune cell types.

Thus, DN αβ T cells are a very promising T cell subset to put 
the brakes on inflammation and accelerate repair. Recently, adop-
tive transfer of allogeneic DN T cells has been shown to be safe 

Table 3. Selection of T cell reparative roles in liver, gastrointestinal, muscle, skin, and bone models of injury

Organ Model Cell type Comment on mechanism (reference)

Liver Hepatic IRI Tregs Mediated decreases in IFN-γ and IL-17 (152)

Poly:C/d-GalN–induced fulminant hepatitis Mediated increases in TGF-β and Kupffer cell–derived IL-10 (153)

Chronic HCV infectionA Suppressed T cell proliferation and IFN-γ (154, 155)

Chronic HCV infectionA CD8+ Tregs IL-10–secreting CD8+ Tregs reduced hepatocellular apoptosis, but impaired viral clearance (120)

Concavalin A–induced hepatitis TR1 Increased IL-10 and decreased TNF-α and IFN-γ (156)

Concavalin A–induced hepatitis Th22/IL-22+ T cells Mediated STAT3-dependent increases in antiapoptotic and mitogenic proteins (88)

HBV infectionA (mice and humans) Proinflammatory role in HBV viral infection (157)

CCl4-induced liver fibrosis γδ T cells CCR6-dependent recruitment of IL-17+IL-22+ γδ T cells reduced hepatic inflammation and fibrosis (158)

GI Intestinal epithelial carcinoma cells Th22/IL-22+ T cells Increased expression of AMPs (79)

Colonic epithelial cells Upregulated mucin 1, 3, 10, and 13 (159)

Human adenocarcinoma cellsA Upregulated the AMP β-defensin and IL-8 (160)

Intestinal IELs γδ T cells γδ T cell–derived KFG promotes epithelial maintenance and repair (105, 109, 161)

Muscle Cardiotoxin-induced injury Tregs Decreased IFN-γ production by NK and effector T cells, leading to decrease in MHC-II+ macrophages (162)

Dystrophy model Treg-derived AREG enhanced satellite cell differentiation and muscle repair (51)

Skin Wound healing Tregs Decreased IFN-γ production by effector T cells, reduced M1 macrophage accumulation, increased EGFR 
expression, reduced infiltration and increased apoptosis of neutrophils to shorten the inflammatory 
response (163)

Human keratinocytesA Th22/IL-22+ T cells IL-22 in T cell dermatosis patient skin (164); increased AMPs/proinflammatory gene expression and 
decreased keratinocyte differentiation gene expression (165); mediated psoriasis-like morphological 
changes (166); slight elevation in CXCL1, 2, 5, and 8 (167); slight decrease in CCL22 and increase  
in IL-20 (168)

Mouse skin γδ T cells Murine DETCs have multiple roles in epithelial homeostasis (104, 109, 169, 170); produced KGFs to indirectly 
drive macrophage recruitment (110); produced IGF-1, increasing survival of epithelial cells in wounds (111); 
regulated keratinocyte AMP production (107)

Human skinA Human γδ T and αβ T cells produced IGF-1, an epithelial growth and survival factor (106)

Bone Bone fracture healing Tregs Decreased osteoclast differentiation via TGF-β, IL-4, and cell-cell contact (171, 172); (in)directly promoted 
osteoblast differentiation by inhibiting conventional T cells (173, 174)

AMPs, antimicrobial proteins; HCV, hepatitis C virus; GI, gastrointestinal; IEL, intraepithelial lymphocyte. AHuman data.

https://www.jci.org
https://www.jci.org
https://www.jci.org/129/7


The Journal of Clinical Investigation   R E V I E W  S E R I E S :  R E P A R A T I V E  I M M U N O L O G Y

2 6 1 4 jci.org   Volume 129   Number 7   July 2019

and efficacious for potential treatment for patients with acute 
myeloid leukemia and could be considered as a cellular therapy to 
accelerate organ repair (103).

γδ T cells
γδ T cells represent a small fraction (1%–5%) of circulating T cells 
in the blood and secondary lymphoid organs (104), but can be 
present in higher proportions in epithelial tissues in the skin, gas-
trointestinal tract, and reproductive tract (105). Thus they are well 
positioned to be involved in epithelial barrier function, repair, and 
homeostasis, and there is evidence that they do so in a tissue-spe-
cific manner.

The murine skin epidermal layer contains Langerhans cells 
and T cells. The majority of the T cells arise from highly spe-
cialized γδ T cells termed dendritic epidermal T cells (DETCs). 
Although a human equivalent of DETCs is yet unknown, the 
human epidermis houses both γδ and αβ T cells (106–108). After 
sensing stress or damage, activated DETCs produce IGF-1, KGF, 
and KGF2, which promote keratinocyte proliferation and wound 
healing. DETCs can also produce IL-17A, which can stimulate the 
induction of the antimicrobial peptide regenerating islet-derived 
protein 3γ (REG3γ) and β-defensin, which provide antimicrobi-
al protection and mediate re-epithelialization of the skin (106). 
In the intestine, γδ intraepithelial lymphocytes have been shown 
to produce TGF-β1, which reduced the expression of IFN-γ from 
intestinal αβ cells to dampen inflammation in addition to their role 
in promoting tissue repair (105, 109–111).

In summary, subsets of γδ T cells are poised to perform tis-
sue-specific roles in inflammation and repair. While the full 
spectrum of factors that shape γδ T cell activity is not known, 
specific butyrophilin-like (BTNL) molecules that are expressed 
in different epithelial tissues could shape, expand, and mature 
tissue-specific γδ T cells (112).

CD8+ Tregs
It has been several decades since CD8+ Tregs were first described 
as regulators of immune responses (113). However, the interest in 
these cells has been relatively muted compared with that in CD4+ 
Tregs. Different CD8+ Treg subsets have been described, and 
there is growing evidence of their role in autoimmune diseases, 
cancer, and chronic infections (114–116).

No specific marker for CD8+ Tregs has been identified to date, 
making it difficult to compare different studies. The three main 
subpopulations described and explored are CD28–/lo/+CD8+ Tregs 
(115); CD122+CD8+ Tregs (mouse), CXCR3+CD8+ Tregs (human) 
(117); and Qa-1–restricted CD8+ Tregs (mouse), HLA-E–restricted 
CD8+ Tregs (human) (Table 1).

There are limited data regarding the role of CD8+ Tregs in inju-
ry and repair. In a murine model of stroke, treatment with IL-10–
producing B cells resulted in generation of a dominant IL-10+ 

CD8+CD122+ Treg population that was associated with decreas-
ing inflammatory responses in brain to a greater extent than were 
CD4+ Tregs. Thus, CD8+ Tregs might have overlapping function 
with CD4+ Tregs (118).

Nevertheless, functions of CD8+ Tregs might not be entire-
ly beneficial. In an acute lung injury model involving H5N1 
influenza virus infection, IL-10+Foxp3+CD8+ T cell–mediated 

suppression of CD8+ effector T cell responses led to an increase 
in mortality (119). However, the effects of regulatory functions 
of IL-10+Foxp3+CD8+ T cells in lung injury versus viral infec-
tion have not yet been elucidated (119). Additionally, because 
of the lack of a specific marker for CD8+ Tregs, the results of 
different studies cannot be clearly compared and interpreted. 
In patients with chronic hepatitis C virus infection, IL-10–pro-
ducing CD8+ T cells have been reported to reduce hepatocellu-
lar apoptosis, suggesting that the CD8+ T cells have regulato-
ry functions. However, a detailed immunophenotyping of the 
CD8+ T cells was not performed in this study (120). Further 
research will be needed to investigate the role of CD8+ Tregs in 
injury and repair processes.

Concluding remarks
An emerging body of work supports the important role for T cells 
in resolution of inflammation and organ repair. The most studied 
T cell implicated in organ repair has been the CD4+Foxp3+ Treg. 
However, data support an important role for TR1 cells, CD8+ Tregs, 
CD4+IL-22+ T cells, CD4–CD8– DN αβ T cells, and γδ T cells. Oth-
er innate lymphoid T cells such as ILC2 cells, invariant NKT cells, 
and mucosal-associated invariant T (MAIT) cells have important 
immune-regulatory functions and can display substantial repair 
and regeneration effects (121). These cells will be covered in anoth-
er article in this JCI Review series on reparative immunology.

Given the relatively low numbers of these T cells compared 
with their powerful actions, it is likely that they use both solu-
ble and contact-dependent mediators and work through other 
cell types. Increasing numbers or enhanced function of spe-
cific pro-repair T cells will likely represent the next generation 
of therapeutics for organ repair. This approach will need to be 
personalized, and several factors will have to be considered, 
including specific organ involvement, the underlying cause and 
stage of organ injury (e.g., sterile versus infectious and acute 
versus chronic), the need for polyclonal versus antigen-specif-
ic T cells, their chemokine and homing receptor repertoire (to 
target the specific injured organ), and mechanisms to modulate 
their pro-repair T cell lineage commitment via epigenetic and 
metabolic reprogramming. Ex vivo “conditioning” of autolo-
gous specific T cells with repair function (via cytokines, drugs, 
viral transduction, or gene editing) or expanded engineered T 
cells (with a reparative armamentarium) will need to be studied 
as cellular adoptive transfer therapy to promote resolution of 
inflammation and organ repair.
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