
The Journal of Clinical Investigation   R E V I E W

1 2 jci.org   Volume 129   Number 1   January 2019

Introduction
According to the classical paradigm, platelets’ physiological and 
pathophysiological role is in hemostasis and thrombosis. In the 
last few years, platelets have been shown to regulate a much wid-
er range of physiological processes, including development, host 
defense, and tissue repair, and related pathological consequenc-
es such as cancer metastasis, autoimmunity, and chronic inflam-
mation. The beneficial or detrimental contribution of platelets 
to many of these pathways is distinct from the mechanisms that 
underlie hemostasis and thrombosis, with the receptors glycopro-
tein VI (GPVI) and C-type lectin–like receptor 2 (CLEC-2) emerg-
ing as key players. In this Review, we critically discuss the roles of 
GPVI and CLEC-2 in platelet regulation and their potential as tar-
gets in both hemostatic and non-hemostatic disorders, including 
chronic inflammatory diseases and cancer.

GPVI
GPVI is a member of the Ig superfamily of receptors with two Ig 
domains (D1, D2), a mucin-like stalk rich in O-glycosylation sites, 
and a cytoplasmic tail containing calmodulin- and Src kinase–
binding sites (1, 2). The expression and signaling of GPVI depend 
on its association with dimeric Fc receptor γ-chain (FcRγ), which 
has an immunoreceptor tyrosine–based activation motif (ITAM) 
that contains two YxxL sequences. Activation of GPVI leads to Src 
kinase–dependent phosphorylation of the two conserved tyrosines, 
binding of the tandem SH2 domains of Syk, and initiation of a sig-
naling cascade that activates phospholipase Cγ2 (Figure 1A). GPVI 
is exclusively expressed in megakaryocytes and platelets, with 
3000–4000 copies per human platelet (1, 3). The gene encoding 
GPVI, GP6, is located at 19q13.4 in the human genome (4).

GPVI-collagen interaction. GPVI is the major signaling receptor 
for collagen. Collagen binds to the D1 domain in GPVI through a 
glycine-proline-hydroxyproline (GPO) sequence, with helical pep-
tides based on this sequence, known as collagen-related peptides 
(CRPs), mimicking collagen-induced platelet activation. Collagen 
binds to dimeric but not to monomeric GPVI with submicromo-
lar affinity (5, 6); crystallization studies suggest that dimerization 
occurs through the D2 domain (7). Several antibodies and phage 
proteins bind selectively to recombinant dimeric GPVI but give 
different estimates of the level of the dimer on resting platelets 
(2%–29% of total protein), making it unclear what is being recog-
nized. These studies all report an increase in dimeric GPVI upon 
platelet activation (8, 9), and this may reinforce collagen signal-
ing. The immobilization of platelets on collagen promotes higher- 
order clustering of GPVI, further increasing signal strength (10).

GPVI-deficient platelets. The first-described GPVI-deficient 
patients presented with an autoimmune thrombocytopenic purpura 
resulting from antibodies to GPVI (11) and bleeding due to the com-
bination of antibody-induced loss of GPVI and thrombocytopenia. 
Several unrelated families in Chile have an insertion that generates a 
stop codon prior to the transmembrane domain (12). All of the index 
case have a normal platelet count and a very mild bleeding diathesis.

Mice with a constitutive deletion in GPVI are born at a Men-
delian ratio, have a normal platelet count, and are indistinguish-
able from littermates (13). They exhibit a mild increase in bleeding 
times following tail incision, although the limitations of this assay 
should be acknowledged. Treatment with the mAb JAQ1 induces a 
sustained loss of GPVI in vivo that is preceded by transient throm-
bocytopenia (14, 15). The loss of GPVI results from binding of the 
Fc region of the antibody to FcγRIIB on liver sinusoidal endothe-
lial cells (16). A similar mechanism may underlie loss of GPVI in 
patients exposed to circulating antibodies (17).

ITAM receptor activation or exposure to high shear leads to 
shedding of GPVI and glycoprotein 1b (GPIb) close to the trans-
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Additional ligands for GPVI. A remarkable number of ligands 
for GPVI have been reported, although the majority have been 
described in a single study, and their significance remains uncer-
tain. These include laminin, which signals through a GPVI- and 
integrin α6β1–dependent pathway (27, 28); fibronectin and vit-
ronectin, which support adhesion to intact atherosclerotic endo-
thelium and to activated endothelial cells, respectively (29, 30); 
the membrane protein EMMPRIN (CD147, basigin), which sup-
ports recruitment of monocytes to immobilized platelets (31); adi-
ponectin (32); and amyloid Aβ40 peptide (33).

More recently, GPVI was reported to support thrombus 
growth and stabilization through binding to fibrin and fibrinogen 

membrane domain in vitro and in vivo by the metalloproteinases a 
disintegrin and metalloproteinase domain–containing protein 10 
(ADAM10) and ADAM17 (18, 19). We speculate that the physiolog-
ical role of shedding is to limit platelet activation in intact vessels, 
notably under high shear. The platelet-specific immunoreceptor 
tyrosine–based inhibition motif (ITIM) receptor G6b-B inhib-
its shedding of GPVI and GPIb, with genetic deletion of G6b-B 
resulting in a severe thrombocytopenia and loss of GPVI and GPIb 
in mice and human (20–22). The GPVI ectodomain (soluble GPVI) 
is elevated in thrombosis, trauma, and inflammatory conditions, 
including rheumatoid arthritis and acute ischemic stroke, serving 
as a specific biomarker of platelet activation (19, 23–26).

Figure 1. ITAM receptors activate platelets via a 
(hem)ITAM phosphotyrosine signaling cascade. 
(A) GPVI activation initiates Src family kinase–
mediated (SFK-mediated) phosphorylation of 
two conserved tyrosines in the associated FcRγ 
ITAM and allows the recruitment and docking of 
Syk’s SH2 domain. GPVI signaling is regulated 
through shedding by ADAM10/17, with G6B-b 
preventing shedding in circulating platelets via 
the tyrosine phosphatases SHP-1 and SHP-2. (B) 
CLEC-2 activation induces phosphorylation on 
the hem(ITAM), allowing binding of Syk. (A and 
B) Once recruited, Syk undergoes a series of auto- 
and trans-phosphorylations by SFK, leading to 
recruitment and phosphorylation of the adaptor 
protein LAT and recruitment of this pathway’s 
effectors, such as GRB2, GADS, SLP76, VAV1/3, 
PIP3, and BTK/TEC. The signaling cascade 
culminates in the phosphorylation and activation 
of PLCγ2, which binds to phosphorylated LAT 
and PIP3 on the plasma membrane. PIP3 also 
recruits BTK and TEC, which phosphorylate 
PLCγ2. Activation of PLCγ2 induces formation of 
the secondary messengers inositol 1,4,5-trisphos-
phate (IP3) and 1,2-diacylglycerol (DAG), resulting 
in the mobilization of intracellular Ca2+ stores and 
activation of PKC, respectively. These changes 
result in the secretion of intracellular α-granules 
and dense granules and inside-out activation 
of platelet integrins, including αIIbβ3, leading to 
platelet aggregation. CLEC-2 signaling in human 
platelets depends on actin polymerization and 
the secondary mediators, ADP and TxA2.
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ner (56). The degree of blood-lymphatic mixing is reduced in mice 
with a targeted deletion of CLEC-2 in the megakaryocyte/platelet 
lineage (PF4-Cre.Clec-1bfl/fl), and the mice are viable, albeit with 
a 30% reduction in platelet count. The reduction in severity may 
be due to the presence of CLEC-2 on another cell type or because 
deletion in the megakaryocytic lineage is delayed (57, 58). Radia-
tion chimeric mice reconstituted with Clec1b−/− fetal liver cells have 
a normal platelet count but develop blood-lymphatic mixing in the 
intestine and exhibit signs of severe malnutrition within the first 
3 months (46, 58), most likely due to impaired uptake of fat in the 
intestine. Postnatal deletion of platelet CLEC-2 using a tamoxifen- 
inducible model does not induce blood-lymphatic mixing, throm-
bocytopenia, or signs of malnutrition, suggesting that CLEC-2  
is not required for maintenance of the lymphatics after develop-
ment (59). Patients lacking CLEC-2 have not been described.

Treatment with the CLEC-2 mAb INU1 achieves sustained 
depletion of CLEC-2 from mouse platelets in vivo (60) due to inter-
nalization and intracellular degradation (61), and severe but tran-
sient thrombocytopenia. CLEC-2, however, is not shed from acti-
vated platelets, and only very low levels of the CLEC-2 ectodomain 
are present in blood (62). CLEC-2–positive microvesicles are ele-
vated in the plasma of patients with rheumatoid arthritis (23).

Additional ligands for CLEC-2. Increased tail bleeding times 
and reduced thrombus formation have been reported in some but 
not all studies in CLEC-2–deficient mouse models, suggesting the 
presence of an additional ligand in the vasculature (46, 57, 60, 63). 
A reduction in thrombus formation is seen in mice expressing a 
signaling-dead mutant of CLEC-2 only in the presence of a block-
ing F(ab) of mAb INU1, suggesting that CLEC-2 functions as an 
adhesion receptor (64). The endogenous ligand could be CLEC-2 
itself, as it has been reported to undergo homophilic binding with 
submicromolar affinity (63).

A variety of exogenous ligands activate CLEC-2, including the 
snake venom toxin rhodocytin, diesel particles, and the sulfated 
polysaccharides dextran sulfate and fucoidan (42, 65). The depen-
dence on sulfation in the polysaccharides may reflect binding to 
the conserved arginines in CLEC-2 that support its interaction 
with podoplanin (55).

Hemostasis, thrombosis, and thrombo-
inflammation
Integrin αIIbβ3–dependent hemostasis. In arteries and arterioles, hemo-
stasis is achieved through rapid activation of platelets by subendo-
thelial matrix proteins and soluble agonists; this leads to inside-out 
activation of integrin αIIbβ3 and a thrombus composed of a densely 
packed fibrin-rich core and a looser outer shell of platelets, with dif-
fusion of soluble ligands from the core determining the size of the 
shell (Figure 2A) (66). GPVI was originally presented as a key player 
in platelet aggregation in in vitro flow models over immobilized col-
lagen, but this is not reflected in vivo due to redundancy with other 
ligands in the vessel wall, including thrombin (which is generated 
following exposure of tissue factor) and thromboxanes (67–69). The 
interaction of fibrin and fibrinogen with GPVI has been proposed to 
play a role in thrombus assembly and stabilization, and may explain 
the increase in embolization in GPVI-deficient mice (57).

In comparison, CLEC-2 has a minor-to-negligible role in 
hemostasis, as shown by in vitro flow studies on collagen and by 

(34–37), although interestingly, fibrinogen only activates human 
GPVI (37). There are contrasting reports on whether the binding 
to monomeric or dimeric GPVI occurs, possibly due to use of dif-
ferent forms of recombinant or shed GPVI (35, 36, 38, 39). The 
binding site for fibrin(ogen) resides in the D-region, with D-dimer 
inhibiting platelet activation by collagen at concentrations that lie 
at the upper end of those reached in vivo (36, 40). The buildup of 
a fibrin monolayer in a microfluidic model of human venous valve 
disease was shown to initiate thrombus formation through a path-
way that is inhibited by D-dimer (41).

A wide range of exogenous toxins and synthetic ligands acti-
vate GPVI, including snake venom toxins (e.g., convulxin), diesel 
exhaust particles, small peptides, polysulfated sugars, and phos-
phorothioate antisense oligonucleotides (42, 43). The structures 
of many of the synthetic ligands suggest that these interactions 
are largely electrostatic, with the multivalent nature of the ligands 
leading to receptor clustering. Several of these ligands bind to oth-
er receptors, and this may facilitate activation of GPVI.

CLEC-2
CLEC-2 is a type II transmembrane protein containing an extracel-
lular lectin–like recognition domain that lacks its Ca2+ binding site 
and a short cytosolic tail harboring a single YxxL sequence termed 
hemITAM (44, 45). CLEC-2 is expressed as a dimer (46) and sig-
nals through a pathway similar to that of GPVI, with the tandem 
SH2 domains of Syk bridging two phosphorylated receptors (Fig-
ure 1B). CLEC-2 is expressed on platelets and megakaryocytes, 
and at low levels on inflammatory dendritic cells and CD11bhiGr-1hi 
myeloid cells (47). The reported expression of CLEC-2 on other 
cells is explained by off-target binding of mAb 17D9 (47). Human 
and mouse platelets reportedly express 2000–4000 and ~40,000 
copies of CLEC-2, respectively (23, 48, 49). The gene encoding 
CLEC-2, CLEC1B, is located at 12p13.31 in the human genome.

CLEC-2/podoplanin interaction. Podoplanin is a type I single 
transmembrane protein and the only established endogenous 
ligand for CLEC-2. Podoplanin is widely expressed outside the 
vasculature, including on kidney podocytes, lymphatic endotheli-
al cells, choroid plexus, and lung epithelial cells, and is upregulat-
ed in many cancers and in inflammation on macrophages, Th17 T 
cells, and fibroblasts (50).

The extracellular domain of podoplanin contains repeat 
regions known as platelet aggregation–stimulating (PLAG) 
domains, an extensively O-glycosylated stalk, and a short cyto-
plasmic tail that binds to the ERM family of cytoskeletal-binding 
proteins that regulates cell motility (51–54). Crystallization stud-
ies have revealed an electrostatic interaction between a conserved 
EDXXXT/S sequence in PLAG2/3 and four arginines in CLEC-2 
(55). The non-glycosylated snake venom rhodocytin binds to the 
same region in CLEC-2 (55).

CLEC-2– and podoplanin-deficient mice. Mice with a constitu-
tive loss of CLEC-2 or podoplanin are characterized by blood-filled 
lymphatic vessels in mid-gestation and near 100% perinatal mor-
tality due to a failure in lung inflation. It was recently shown that the 
binding of CLEC-2 to podoplanin on lymphatic endothelial cells is 
required for lung development and that this is involved in the dif-
ferentiation of lung mesothelial cells into smooth muscle actin–
positive alveolar duct myofibroblasts in a TGF-β–dependent man-
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negligible increase in tail bleeding times (71), whereas mice defi-
cient in GPVI and CLEC-2 show a marked hemostatic defect (57) 
with the difference reflecting the adhesive role of CLEC-2.

These observations suggest that GPVI and CLEC-2 support 
hemostasis by functioning as signaling and adhesion receptors, 
respectively, at least in mice.

measurement of tail bleeding times in CLEC-2–deficient mice, 
although the limitations of these two assays should be acknowl-
edged (46, 57, 60, 63). CLEC-2 is not phosphorylated on a collagen 
surface under shear, consistent with its role as an adhesion recep-
tor in the vasculature (46, 64, 70). Mice deficient in the tyrosine 
kinase Syk or treated with the Syk inhibitor BI1002494 exhibit a 

Figure 2. CLEC-2 and GPVI contribute to αIIbβ3-dependent and -independent hemostasis. (A) At the site of arterial injury, platelets roll, adhere, and 
aggregate to arrest bleeding through integrin αIIbβ3. The activation of GPVI by collagen drives integrin activation. Activated platelets release secondary 
mediators such as ADP and TxA2, leading to recruitment of circulating platelets and formation of a platelet-fibrin-fibrinogen plug. The resulting thrombus 
is composed of a densely packed, fibrin-rich core and a looser outer shell of platelets. The diffusion of ligands from the core to the outer shell determines 
the size of the thrombus. Fibrin and fibrinogen bind to and activate GPVI, which may serve to propagate and stabilize the thrombus. (B) At the site of 
inflammation, platelets prevent hemorrhaging independent of αIIbβ3. The contribution of platelet receptors to the inflammatory hemostasis is stimulus-  
and organ-dependent. During immune complex–mediated dermatitis, endothelial and stromal cell activation promotes recruitment, activation, and trans-
migration of neutrophils to the inflamed skin. Single platelets rapidly adhere and seal the neutrophil-mediated vascular damage through GPVI. The bleed-
ing in GPVI-deficient mice is limited by the interaction of CLEC-2 with podoplanin on macrophages and stromal cells. In the absence of both receptors, a 
severe loss of vascular integrity is observed, with increased bleeding in the inflamed skin.

https://www.jci.org
https://www.jci.org
https://www.jci.org/129/1


The Journal of Clinical Investigation   R E V I E W

1 6 jci.org   Volume 129   Number 1   January 2019

thrombosis following FeCl3-induced, laser, or mechanical injury, 
and upon atherosclerotic plaque rupture in mice (85, 86). Plate-
let activation by plaque material in vitro is also blocked by GPVI 
antibodies, dimeric GPVI (commercially available as Revacept), 
and inhibitors of platelet tyrosine kinases (87–91). The discovery of 
multiple ligands for GPVI, however, has brought uncertainty as to 
the mechanisms that drive thrombus formation. This is relevant to 
current phase II clinical trials with Revacept in patients with stable 
coronary artery disease or transient ischemic attacks (92). Reva-
cept blocks platelet activation by collagen but not by fibrin (36, 40).

There are fewer studies on the role of CLEC-2 in arterial 
thrombosis. Antibody depletion or genetic deletion of CLEC-2  
from platelets reduces thrombus formation following FeCl3- 
induced, laser, or mechanical injury, with a greater effect in mice 
deficient in GPVI and CLEC-2 relative to loss of either receptor 
alone (57, 60, 63). Thrombus formation induced by FeCl3 or pho-
tochemical injury is also inhibited in the presence of the Syk inhib-
itor BI1002494 or PRT-060318, or in Syk-deficient mice, with the 
degree of inhibition governed by the experimental model (71, 93).

These results highlight GPVI as a novel target for prevention 
of arterial thrombosis, while the potential of CLEC-2 as a target 
remains uncertain.

Thrombo-inflammation. Thrombo-inflammation was first 
used to describe the role of platelets in the inflammatory events 
that give rise to ischemia-reperfusion injury in a middle cerebral 
artery occlusion (MCAO) model of stroke (94). It is now used to 
describe the interplay between inflammatory and thrombotic 
pathomechanisms in arterial and venous disorders, including 
deep vein thrombosis (DVT) and in infection. In some cases, 
platelets drive the inflammatory events, and in others, the inflam-
mation drives the thrombosis, with thrombo-inflammation being 
used to describe both sets of mechanisms. The term should not be 
confused with immunothrombosis, however, which refers to cap-
ture of pathogens in the vasculature to facilitate their removal and 
limit dissemination (95).

GPVI is a key player in the neuronal damage that occurs fol-
lowing cerebral reperfusion in the MCAO model of stroke (96), as 
shown by the beneficial effect of GPVI antibodies or Revacept (97–
99). The reperfusion triggers an inflammatory response involving 
platelet adhesion/activation mechanisms, T cells, neutrophils, 
and monocytes, leading to tissue damage and late-stage thrombus 
formation. Inhibiting thrombus formation with αIIbβ3 blockers dra-
matically increases intracranial hemorrhage and infarct growth 
(96), suggesting that the beneficial effect of GPVI blockade is due 
to reduction of the inflammatory response, possibly by reducing 
release of IL-1β and polyphosphates and attenuating inflamma-
tory cell recruitment (94, 100). Similarly, GPVI blockade causes 
a reduction in inflammatory cell recruitment and infarct size fol-
lowing myocardial ischemia-reperfusion injury (101). Inhibition 
of GPVI also increases perfusion, although this is accompanied by 
increased intramyocardial bleeding. Separating the role of GPVI 
in inflammation and thrombotic events is required to fully under-
stand its role in thrombo-inflammation.

The podoplanin/CLEC-2 axis is thought to be a major player 
in thrombo-inflammatory disorders as a result of upregulation 
of podoplanin on stromal cells and tissue-resident macrophages. 
A modified strain of Salmonella typhimurium leads to a delayed 

Integrin αIIbβ3–independent hemostasis. In a seminal study 
in thrombocytopenic mice, platelets were shown to play a role 
in prevention of bleeding in the skin, lungs, and brain during 
inflammatory challenge due to loss of vascular integrity (72). 
This inflammatory hemostasis is independent of most of the major 
platelet receptors, including integrin αIIbβ3. The adoptive transfer 
of receptor-deficient platelets into thrombocytopenic IL4-R–
GPIbα–transgenic mice identified GPVI and CLEC-2 as critical 
mediators of inflammatory hemostasis in the inflamed skin and 
lung (73). In contrast, in mice with a normal platelet count, inflam-
matory bleeding in the inflamed skin is only seen in the absence 
of GPVI, with mice deficient in both GPVI and CLEC-2 exhibit-
ing increased bleeding (Figure 2B) (74, 75). The prevention of 
inflammatory bleeding in the skin is due to platelets sealing sites 
of breach in the vessel wall caused by neutrophils (72, 74, 75). In 
contrast to the skin, bleeding in the inflamed lung in mice with a 
normal platelet count is independent of GPVI or CLEC-2, possi-
bly due to redundancy with other receptors. Taken together, these 
results show that the contribution of platelet receptors to inflam-
matory hemostasis is organ and stimulus dependent (75). For an 
excellent review and further discussion, see ref. 76.

Another example of αIIbβ3-independent hemostasis is seen in 
high endothelial venules in lymph nodes. In these vessels, immune 
cell trafficking (which increases during an active immune response) 
leads to bleeding in the presence of Src and Syk inhibitors or follow-
ing post-developmental loss of podoplanin on fibroblastic reticular 
cells (FRCs) or CLEC-2 on platelets (77, 78). It has been proposed that 
podoplanin on the FRCs stimulates the release of sphingosine-1–
phosphate (S1P) from platelets, leading to increased VE-cadherin in 
endothelial cells (77), although the role of S1P has been questioned 
(79). Mice with a platelet-specific deletion of CLEC-2 are able to 
sustain a primary immune response but show a defect in immune 
cell recirculation after repeated immunizations (78).

The interaction of podoplanin and platelet CLEC-2 has been 
proposed to prevent retrograde flow of blood from the venous sys-
tem by supporting activation of platelets on the lymphatic valves (80, 
81). This would suggest that the lymphatic valves on their own are 
unable to form a sufficiently tight seal to counteract the higher pres-
sure in the venous system. Retrograde blood flow is absent in mice or 
humans deficient in either of the integrin αIIbβ3 subunits (82), making 
this a further example of αIIbβ3-independent hemostasis.

The activation of CLEC-2 by podoplanin also mediates hemo-
stasis during development of the cerebrovasculature through a 
pathway that is largely independent of αIIbβ3 (83). Mice deficient 
in podoplanin or platelet CLEC-2 have marked hemorrhaging 
in the mid- and hindbrain in mid-gestation, whereas only mild 
bleeding is seen in αIIbβ3-deficient mice. Podoplanin is markedly 
upregulated on neuroepithelial cells at this stage of development, 
providing a mechanism of platelet activation. Mouse podoplanin 
binds to mouse CLEC-2 with low nanomolar affinity, allowing 
it to capture and retain platelets on immobilized podoplanin at 
arteriolar shear forces (84).

The above examples illustrate that αIIbβ3-independent hemo-
stasis is more widespread than previously recognized, representing 
a paradigm shift in our understanding of hemostatic mechanisms.

Arterial thrombosis. There is compelling evidence that GPVI 
is a significant contributor (along with other pathways) to arterial 

https://www.jci.org
https://www.jci.org
https://www.jci.org/129/1


The Journal of Clinical Investigation   R E V I E W

1 7jci.org   Volume 129   Number 1   January 2019

platelet/fibrin-rich thrombosis in the liver at the time that the 
bacterial load is in decline (102). Upregulation of podoplanin in 
inflammatory foci and subendothelial layers as well as intravascu-
lar thrombosis are abolished in mice deficient in TLR4 and IFN-γ, 
showing that it is the inflammatory response that gives rise to the 
thrombosis. Thrombosis is inhibited in CLEC-2–deficient mice, 
suggesting that exposure of podoplanin at sites of breach in the 
vessel wall drives CLEC-2–dependent platelet activation.

DVT is also caused by inflammatory events in the vessel wall, 
leading to a thrombus that is rich in red cells and fibrin (103, 104). 
Thrombus formation involves the interaction of von Willebrand 
factor (vWF), platelets, neutrophils, and mast cells, and upregu-
lation of podoplanin in the vessel wall (104–106). Mice deficient 
in CLEC-2 or treated with an anti-podoplanin antibody show a 
reduction in thrombus formation (107).

The recognition of the interplay between inflammation and 
platelets opens up new opportunities for therapeutic intervention 
at either the level of GPVI and CLEC-2 or the inflammatory events.

Sterile and non-sterile injury
The regulation of the inflammatory response is crucial in limiting 
tissue damage and promoting repair following injury. In inflamma-
tion’s initial phase, platelet activation promotes recruitment and acti-
vation of neutrophils and monocytes, potentiating the inflammatory 
response. (108). In later stages, platelets may help in the resolution of 
inflammation through inhibition of proinflammatory macrophages 
and monocytes (109, 110). GPVI and CLEC-2 are emerging as key 
mediators of both phases via the regulation of leukocyte activation 
and recruitment (Figure 3). In particular, the upregulation of podo-
planin at sites of infection fuels speculation that CLEC-2 is involved, 

Figure 3. Multiple roles of CLEC-2 and GPVI in thrombo-inflammation and thrombosis. During thrombo-inflammatory diseases, platelets regulate 
immune cell recruitment at the site of inflammation. Deletion of GPVI (Gp6–/–) decreases the inflammatory reaction as a consequence of a reduction in 
neutrophil recruitment and the number of inflammatory macrophages. Conversely, deletion of CLEC2 (Clec1b–/–) potentiates the inflammatory reaction 
through an increase in neutrophil infiltration and inducing a proinflammatory macrophage phenotype. In addition, GPVI promotes the underlying inflam-
mation that drives plaque formation and drives thrombus formation upon plaque rupture. During venous thrombosis, CLEC-2 promotes thrombosis at 
sites of breach in the vessel wall by upregulating podoplanin on stromal cells and inflammatory macrophages.
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although it should be remembered that podoplanin signals constitu-
tively and has additional ligands (50, 111).

Bacterial infection. Platelets play a critical role in the inflam-
matory response associated with infection, as illustrated by the 
increase in major organ damage seen in thrombocytopenic mice 
following bacterial infection or lipopolysaccharide-induced 
inflammation (109, 112). As yet, however, there are only a handful 
of studies on the platelet receptors involved.

GPVI but not CLEC-2 has been reported to be protective in 
a mouse model of Klebsiella pneumonia–mediated pneumosepsis 
(113). GPVI deficiency increases bacterial load in the lungs and 
distant organs in association with a reduction in circulating plate-
lets and platelet-leukocyte aggregates. The activation of GPVI 
promotes formation of platelet–leukocyte aggregates, leading 
to enhanced phagocytosis of Klebsiella pneumonia in vitro (113), 
although it is not known whether this occurs in vivo. GPVI has 
been shown to mediate platelet activation by Helicobacter pylori 
and Staphylococcus aureus (114, 115), but there are no reports of 
activation by Klebsiella pneumonia. Conversely, the absence of 
CLEC-2 but not GPVI increases clinical severity in a cecal ligation 
and puncture (CLP) model or following injection of lipopolysac-
charide (116). Deletion of CLEC-2 exacerbates the cytokine storm 
and inhibits inflammatory macrophage recruitment to the infect-
ed peritoneum, resulting in increased bacterial load and organ 
injury (116). The absence of CLEC-2 also accelerates the decline 
in lung function in a lipopolysaccharide-induced acute respiratory 
distress syndrome (ARDS) model due to an increase in neutrophil 
recruitment to the inflamed lung (59). Crosslinking podoplanin 
using mAb 8.1.1 is protective against lung injury but not in system-
ic endotoxemia or CLP (116, 117), suggesting that the beneficial 
effect of targeting podoplanin depends on the stimulus, organ, 
and role of other immune cells. Therefore, although they share a 
common signaling pathway, the selective contribution of CLEC-2  
and GPVI to inflammation and infection is tightly regulated by 
their ligands and the underlying mechanisms.

Viral infection. More than ten years ago, GPVI and CLEC-2 
were reported to bind directly to and promote transport and dis-
semination of hepatitis C virus (118) and HIV-1 (119), respectively, 
but the clinical significance remains uncertain.

Sterile injury. Attention has been paid to the role of GPVI 
in sterile inflammation due to the seminal study showing that 
GPVI promotes accumulation of proinflammatory platelet- 
derived microvesicles in rheumatoid arthritis, with GPVI-defi-
cient mice exhibiting reduced clinical signs and tissue patholo-
gy (120, 121). The identity of the GPVI-activating ligand and the 
mechanism underlying the entry of microvesicles into the joints 
are unknown. GPVI has also been shown to promote platelet 
recruitment to inflamed glomeruli during immune complex–
mediated glomerulonephritis, potentiating neutrophil recruit-
ment (122). In dermatitis, GPVI was shown to promote the 
proinflammatory phenotype of macrophages, with loss of GPVI 
associated with a switch toward a pro-resolution M2 phenotype 
(123). In arthritis, increased podoplanin expression in areas of 
hyperplasia, inflammation, and disrupted tissue structure is 
indicative of a role in the inflammatory process (124–126), with 
podoplanin upregulation occurring on several cell types, includ-
ing fibroblasts, macrophages, and Th17 T cells (124–128).

Podoplanin and CLEC-2 have been reported to be antiin-
flammatory in an experimental autoimmune encephalomyeli-
tis (EAE) model in mice. An increase in EAE severity is seen on 
deletion of podoplanin or platelet CLEC-2, and EAE is reduced 
upon overexpression of podoplanin on Th17 cells associated with 
an increased rate of resolution of inflammation, suggesting that 
podoplanin is a nonpathogenic marker of Th17 cells and that 
the podoplanin/CLEC-2 axis promotes resolution (129–131). In 
contrast, overexpression of podoplanin on Th17 T cells and fibro-
blasts correlates with increased inflammation and clinical sever-
ity in rheumatoid arthritis (132), showing that the beneficial role 
of podoplanin is disease dependent.

CLEC-2 has also been shown to have a beneficial role in a 
diabetic mouse model through an interaction with podoplanin- 
positive Kupffer cells. The injection of recombinant dimeric 
CLEC-2 promoted an antiinflammatory phenotype, altering 
expression of genes involved in lipid metabolism, reducing blood 
glucose and liver triglyceride levels, and improving glucose tol-
erance (133). The mechanism underlying the beneficial effect of 
CLEC-2, however, is unclear.

These studies reveal both pro- and antiinflammatory roles of 
GPVI and CLEC-2, respectively, in sterile injury. Exploiting this in 
the clinic will require a greater understanding of the mechanisms 
of activation and function of the two ITAM receptors.

Tissue repair. The presence of podoplanin on epidermal kerati-
nocytes suggests a role in tissue repair. In an in vitro model, siRNA- 
mediated downregulation of podoplanin in epidermal keratino-
cytes decreased migration in association with upregulation of 
E-cadherin (134). Treatment with platelets or addition of recombi-
nant CLEC-2 inhibits keratinocyte migration and increases E-cad-
herin expression (134). These results need to be confirmed in vivo.

Cancer
Platelets play a key role in tumor growth and metastasis by sup-
porting blood and lymphatic vessel formation and aiding cancer 
cells in evading the immune system and metastasizing (135, 136). 
Moreover, tumoral activation of platelets can lead to pathological 
thrombosis and thromboembolism that further complicate treat-
ment (137). Relatively little is known about the role of GPVI in 
cancer, although it has been shown to promote metastasis in lung 
cancer and melanoma models (138). In contrast, the role of podo-
planin in cancer has been studied for more than 15 years, and sev-
eral strategies to inhibit podoplanin have been developed.

Podoplanin is expressed at the invasive front of many tumors 
and on cancer-associated fibroblasts, with high levels of expres-
sion associated with poor outcome in glioma, squamous cell 
carcinoma, mesothelioma, and melanoma (139–141). Cytokines 
induce podoplanin expression, which in some cases leads to fur-
ther cytokine production as well as metalloproteinase expression, 
facilitating tumor cell invasion. In mouse models, podoplanin pro-
motes tumor growth, epithelial-mesenchymal transition (EMT), 
invasion, and metastasis (50, 139, 142). Many of these actions are 
mediated through platelet CLEC-2, including tumor progression, 
metastasis, and cancer-induced thrombosis (143–146). The podo-
planin/CLEC-2 axis promotes an immunosuppressed microenvi-
ronment, facilitating spread and growth of the cancer (131). Block-
ing podoplanin with NZ1 (anti-human) or 8.1.1 (anti-mouse) mAb, 
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and thrombo-inflammation identify both receptors as targets for 
development of a new class of antithrombotic drugs. Moreover, 
the presence of two haplotypes for GPVI — GPVIa and GPVIb — 
and the association between GPVI haplotypes and pathological 
conditions such as stroke and myocardial infarction strengthen 
the potential of anti-GPVI therapy (168–170). While bleeding 
is a concern with GPVI-targeting strategies, CLEC-2 does not 
appear to play a major role in hemostasis. Inflammatory bleeding 
and embolization are also a concern in targeting GPVI, although 
the absence of reports of bleeding at sites of inflammation in 
GPVI-deficient patients suggests that this may be overstated. The 
risk of bleeding is increased in the presence of other antiplatelet 
agents such as aspirin (68), and clinical trials will have to take 
this into account in targeting GPVI or CLEC-2. The interaction of 
CLEC-2 and podoplanin is also a target in treatment of non-hemo-
static disorders, including in chronic inflammatory conditions and 
infection, and in reducing cancer metastasis. However, targeting 
GPVI and CLEC-2 in disease will have to be closely monitored 
due to their multiple roles in regulating platelet function during 
disease progression, while a greater understanding of the role of 
the various ligands for GPVI and CLEC-2 may pave the way for 
development of receptor-selective ligands. Humanized GPVI and 
CLEC-2 mice represent a powerful tool to evaluate the effect of 
anti-GPVI and anti–CLEC-2 agents in different thrombotic and 
inflammatory diseases (171).

The challenge is now to translate findings from mouse to 
human, with encouraging results from the phase II trials with 
Revacept and the human GPVI-blocking F(ab) ACT-017 anticipat-
ed to drive further interest in this field. Inhibitors of Src, Syk, and 
Tec tyrosine kinases are already in the clinic and could be used to 
block platelet activation by GPVI and CLEC-2. While there is cur-
rently concern about the effect of these inhibitors on bleeding, this 
may be overestimated due to off-target actions (172). Further, the 
efficacy of the irreversible Btk inhibitor ibrutinib, which like aspi-
rin can be used in a low-dose pharmaceutical preparation, against 
platelet activation by human plaque material offers considerable 
hope in this regard (91). The next few years will see a deeper 
understanding of the roles of GPVI and CLEC-2 in this remarkable 
cell and possible translation to the clinic.
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or podoplanin-targeting CAR T cells (NZ-1–CAR T cells), has been 
shown to inhibit cancer progression (147–149). A similar benefi-
cial effect has been reported using a small molecule inhibitor of 
CLEC-2, 2CP (150), or mutated rhodocytin in an experimental 
lung metastasis model (147). Moreover, aberrant glycosylation of 
podoplanin in cancer cells raises the possibility of a selective ther-
apeutic targeting strategy (151).

In contrast, the expression of CLEC-2 on cancer cells in hepa-
tocellular carcinoma and gastric cancer is protective. Downregu-
lation of CLEC-2 has been observed on the invasive form of both 
cancers, and has been linked to increased EMT and tumor aggres-
siveness (152, 153). Therefore, the role of CLEC-2 of in cancer 
progression and metastasis depends on its expression on cancer 
cells or platelets.

Development
There is no evidence to suggest that GPVI plays a role in devel-
opment, although it is noteworthy that neonatal platelets are 
hyporesponsive to GPVI and CLEC-2 for reasons that are not 
yet known (154). In contrast, the podoplanin/CLEC-2 axis plays 
a critical role in several stages of embryonic development. Mice 
with a constitutive deficiency in CLEC-2 or podoplanin have 
blood-lymphatic mixing and die at the time of birth as described 
above (58, 80, 82, 155). A similar phenotype is seen in a CLEC-2 
signaling–null mouse (64) and in mice deficient in Syk, SLP-76, 
and PLCγ2, demonstrating that this is caused by loss of platelet 
activation by CLEC-2 (156–159). Blood-lymphatic mixing is also 
present in mouse embryos with other defects in platelet signal-
ing pathways or severe thrombocytopenia (58, 80, 82, 155, 160, 
161). The mechanism of the blood-lymphatic mixing, however, 
is uncertain, although it is not due to a failure of Prox-1–positive 
endothelial cells to migrate away from the cardinal vein, as ini-
tially proposed (162). The binding of podoplanin to CLEC-2 leads 
to clustering of both receptors, resulting in stable adhesion of 
platelets to lymphatic endothelial cells and inhibition of podo-
planin signaling (58, 163). This may prevent fusion of migrating 
lymphatic endothelial cells with blood vessels (155).

Additional developmental defects are present in constitu-
tive CLEC-2– and podoplanin-deficient mice, including defects 
in the development of the cerebrovasculature (discussed above), 
the absence of mesenteric and inguinal lymph nodes, and a 
reduction in platelet count (58, 78, 155, 164, 165). The presence 
of lymph nodes in the PF4-Cre.Clec-1bfl/fl mouse demonstrates, 
however, that platelet CLEC-2 is dispensable for their forma-
tion. Mice with post-developmental deletion of platelet CLEC-2 
have a normal platelet count, suggesting that the mild throm-
bocytopenia occurs secondary to blood-lymphatic mixing. The 
absence of a phenotype upon deletion of podoplanin on lung 
type 1 alveolar cells and kidney podocytes demonstrates that 
the podoplanin/CLEC-2 axis is not required for development of 
these two organs (59, 116, 166, 167).

Concluding remarks
Most of our knowledge on GPVI and CLEC-2 in disease is based 
on in vitro data and experimental models in mice and not humans. 
Nevertheless, the relatively minor or negligible roles of GPVI 
and CLEC-2 in hemostasis and their contribution to thrombosis 
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