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Introduction
Many fundamental aspects of human physiology, metabolism, 
and behavior display 24-hour rhythms. These are found at all lev-
els — from cells, tissues, and organs to the entire organism (for a 

review see ref. 1). The master circadian clock resides in the hypo-
thalamic suprachiasmatic nuclei and coordinates daily rhythms 
of sleep and wakefulness, core body temperature, and hormone 
secretion (such as cortisol, melatonin, and many others). The 
circadian clock is synchronized to Earth’s rotation primarily by 
light-dark cycles — a process called “entrainment.” In addition, 
virtually every cell of the body contains a circadian oscillator that 
contributes to the daily rhythmicity of a large variety of physio-
logical and metabolic activities, including immune responses 
and xenobiotic detoxification as well as renal and cardiovascular 
functions. In fact, at least 40% of protein-coding genes show dai-
ly rhythms in expression in a tissue-specific manner not only in 
nocturnal rodents (2), but also in humans (3).

Given this ubiquity of daily rhythms, it is not surprising that 
the metabolism (pharmacokinetics) and effects (pharmacody-
namics) of many, especially short-half-life, drugs change over the 
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first searched the circadian transcriptome of blood monocytes for 
biomarkers using machine learning approaches. Next, we migrat-
ed the biomarkers to a clinically relevant gene expression profil-
ing platform and finally validated our assay using an indepen-
dent study. Our BodyTime assay uses a small set of blood-based 
transcript biomarkers to compute internal time with an accuracy 
equaling that of the current gold standard method at a smaller 
monetary and time cost. Thus, the BodyTime assay is a precise 
new diagnostic tool allowing personalized therapeutic interven-
tion adapted to the patient’s endogenous circadian phase. Such 
a tool has the potential to foster further development of chrono-
medicine on a much larger scale.

Results
Strategy for BodyTime assay development. The goal of the present 
study was to develop an objective and simple assay to determine 
internal circadian time in humans for both clinical and research 
use (BodyTime assay). Specifically, we aimed to accurately quan-
tify the phase of entrainment (also called chronotype) of humans 
using multiplex gene expression profiling. To establish a validat-
ed test, we followed a 3-stage biomarker development strategy 
(Figure 1A and ref. 23): (a) unbiased discovery of biomarkers, i.e., 
time-telling genes, using a large-content platform (RNA-Seq) 
(time-telling genes are likely to be identified among those genes 
whose expression is robustly time-of-day-dependent across 
many individuals with similar phase, amplitude, and expression 
level); (b) migration to a targeted gene expression profiling plat-
form (RNA-Seq → NanoString); and (c) independent external 
biomarker/assay validation.

To this end, we conducted 2 independent studies with healthy 
volunteers: the BOTI (BOdy TIme) study (Figure 1B) to identify 
the time-telling genes (stages 1 and 2) and the VALI (VALIdation) 
study (Figure 1C) to test whether the final assay performs well on 
a clinically relevant platform with an independent subject cohort 
(stage 3). The design of these studies will be outlined in the respec-
tive sections of Results. To assess the performance of the Body-
Time assay, we compared it with the current gold standard for 
internal circadian time, the measurement of DLMO.

We chose to use peripheral blood monocytes as source mate-
rial for gene expression profiling, because (a) blood is an easily 
accessible source of human cells and (b) monocytes constitute a 
homogenous blood cell population and have been shown to pos-
sess a high-amplitude circadian clock (24, 25) in contrast to other 
PBMCs, such as B or T cells. For the final multiplex gene expres-
sion profiling, we chose the NanoString Technologies nCounter 
platform, since it offers key advantages (sensitivity, reproducibili-
ty, technical robustness, etc.) over more traditional methods such 
as microarrays and quantitative reverse transcription PCR (26). 
Moreover, NanoString-based diagnostic tests with FDA clearance 
are already on the market (27).

Stage 1: Extraction of biomarkers for internal time from human 
monocyte transcriptome time series data. The goal of stage 1 was to 
extract a candidate set of time-telling genes from whole monocyte 
transcriptomic time series data from multiple individuals. That 
is, we sought a function that maps gene expression signatures to 
time. To this end, we conducted the BOTI study under controlled 
laboratory conditions using a narrow cohort design (12 exclusive-

24 hours. A recent study has shown that approximately 50% of all 
current drugs target the product of a circadian gene (3). Addition-
ally, therapeutic outcomes such as survival after open-heart sur-
gery (4), efficacy and tolerance of chemotherapy (5), wound heal-
ing (6), antibody response to vaccination (7), or effectiveness of 
acetylsalicylic acid application for cardiovascular diseases (8) all 
vary across time of day.

Therefore, tailoring drug administration or other therapeutic 
interventions to optimal time of day (chronotherapeutics) aims 
to maximize efficacy and/or improve tolerance (9). However, one 
key barrier to widespread adoption of chronotherapeutics is that 
humans are heterogeneous with respect to timing of their internal 
clocks as well as to their behavior influencing synchronization of 
their clocks to the environmental light-dark cycle. In other words, 
humans have different “phases of entrainment” — a concept that 
underlies different “chronotypes” whose physiological and behav-
ioral rhythms range from early (“morning larks”) to late (“night 
owls”), the majority being somewhere in between (10). Moreover, 
the phase of entrainment of humans is not a stable trait; it rath-
er depends on many internal and external factors. It has a genetic 
basis (11), is age- and sex-dependent (10), and depends on light 
exposure level (12, 13) and on the season (12, 14) as well as on the 
location within the time zone (10).

Therefore, any timed therapeutic intervention needs to be 
personalized. In other words, we need a simple diagnostic tool 
to read out objectively the internal time of an individual at a giv-
en moment. The present approaches to assess internal time are 
either based on questionnaires and therefore not objective (10, 
15), or they are cumbersome and costly, requiring multiple mea-
surements under controlled conditions. The current gold standard 
to assess circadian phase is to determine the time point when 
endogenous melatonin secreted from the pineal gland reach-
es a predefined threshold concentration in saliva or blood plas-
ma — dim-light melatonin onset (DLMO) (16, 17). Because light 
suppresses melatonin secretion, sampling has to be carried out 
under controlled dim-light conditions. Moreover, the sampling 
rate (every 30–60 minutes over a period of 5–6 hours) makes the 
protocol inconvenient to be used in daily clinical routine. Hence, 
the current situation is suboptimal, which is unfortunate because 
there is an increasing need for internal circadian time assessment 
as reflected by inclusion of DLMO in the latest catalog of diagnos-
tic criteria for circadian rhythm sleep disorders (18).

The estimation of internal circadian time from single or mul-
tiple samples was pioneered by Ueda et al. (19). Their molecu-
lar-timetable method was originally developed on mouse liver 
transcripts and later translated to humans by analysis of blood 
metabolites from 2 samples taken 12 hours apart (20). Subsequent 
studies applied machine learning approaches (ZeitZeiger and par-
tial least squares) to circadian transcriptomes from human periph-
eral blood mononuclear cells (PBMCs), which, however, did not 
result in a prediction accuracy similar to that of the current gold 
standard DLMO measurement (21, 22). In addition, the identified 
biomarkers were not validated in truly independent studies, and 
the measurement platforms were not adapted for clinical usage.

Here, we present a simple solution to determine internal time 
of an individual from a single blood sample taken at any time 
during the day. To establish a validated assay for clinical usage, we 
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dance profiles (9,115 genes) from 10 subjects (Supplemental Table 
2 and Supplemental Figure 1).

Among the various bioinformatics methods proposed to 
obtain predictors that map gene signatures to time, we applied 
ZeitZeiger (29) to the RNA-Seq data set, because ZeitZeiger 
achieves good prediction performance with fewer genes com-
pared with other methods. We devised a 4-predictors approach, 
i.e., we tested 4 types of predictors that differ with respect to the 
predicted variable (external time or internal time) and the format 
of the RNA-Seq data input (1 sample or 2 samples 6 hours apart). 
The difference between the 2 formats is the mRNA abundance 
profile assigned to each measurement (Mi) in the time series 
(1-sample: single profile recorded at Mi; 2-sample: ratio of 2 pro-
files recorded 6 hours apart, Mi/Mi+2). The idea of the 4-predictor 
approach is that genes with high and robust time-telling proper-
ties should be less dependent on the type of predictor and thus 
should be frequently extracted by ZeitZeiger.

ly male subjects; mean age, 25.3 ± 2.6 years [± SD], range 22–30 
years; mean DLMO, 21:17 ± 1:09, range 19:13–22:36) (Figure 1B 
and Supplemental Table 1; supplemental material available online 
with this article; https://doi.org/10.1172/JCI120874DS1). For 
each subject, 14 blood samples were taken at regular intervals of 
3 hours over a period of 40 hours in a constant routine protocol 
(28) to minimize unwanted effects of sleep, activity, or meals on 
circadian gene expression. Subjects remained in a semi-recum-
bent posture in bed under dim light and constant temperature 
and humidity during a period of 40 hours of sleep deprivation. 
They received isocaloric snacks every hour and water. Hourly sali-
va samples were taken for determination of melatonin secretion 
profiles. Monocytes were sorted from whole blood, and resulting 
RNA was subjected to RNA-Seq. In addition to the external time 
of day, each sample was assigned an additional time stamp, which 
relates to the subject’s DLMO (internal time). After quality assess-
ment, the final RNA-Seq time series included 136 mRNA abun-

Figure 1. Biomarker discovery strategy, sampling schemes, and study cohorts. (A) Biomarker discovery pipeline. (B) Sampling scheme and composition 
of the BOTI study cohort (n = 12 subjects) by sex, age, and DLMO. Blood samples were drawn at regular 3-hour intervals over a period of 40 hours (M = 14 
samples per subject). Each sample was assigned an external time (Central European Time) and an internal time (hours past DLMO, derived from saliva 
melatonin profiles). The displayed sampling scheme is representative of the subject highlighted by a circle in the study cohort plot (green lines indicate 
sampling times on the second day). (C) Sampling scheme and composition of the VALI study cohort (n = 28 subjects) by sex, age, and DLMO. The spread of 
the BOTI study cohort (B) in the same coordinate system is shaded in gray. In contrast to the BOTI study, the VALI study includes extreme and moderately 
extreme chronotypes. For each subject 2 blood samples were obtained, drawn 6 hours apart (M1, morning sample; M2, afternoon sample). Each sample 
was assigned an external time (Central European Time) and an internal time (hours past DLMO derived from saliva melatonin secretion profiles).
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Figure 2. Extraction of candidate biomarkers and migration to the NanoString platform. (A) Cumulative frequency distributions of the absolute predic-
tion errors for 4 types of ZeitZeiger internal cross-validation predictors of either internal or external time by 1- or 2-sample mRNA abundance profiles  
(n = 136). Each type of predictor was built for 9 combinations of the ZeitZeiger parameters sumabsv = {1, 2, 3} and nSPC = {1, 2, 3}. Insets show the average 
number of genes ± SD in the internal cross-validation predictors as a function of sumabsv and nSPC. (B) Global gene sets of the best-performing internal 
cross-validation predictors shown in A. Each column depicts a predictor defined by the type of the predictor variable (internal or external time), the format 
of the data input (1-sample or 2-sample), and the ZeitZeiger parameters (sumabsv, nSPC). Each predictor includes 10 leave-one-subject-out cross- 
validation runs, i.e., 10 gene sets. The ordering (from top to bottom) and the colors indicate how often a gene was identified as time-telling and assigned 
to SPC1, SPC2, or both among those 10 gene sets. Thirty-four genes that showed a high frequency of identification among cross-validation runs and were 
consistently identified across the best-performing predictors were chosen as a candidate biomarker set for internal time and migrated to the NanoString 
platform (highlighted in bold font). (C) Impact of platform migration on the performance of the candidate biomarkers for internal time. Given are cumula-
tive frequency distributions of the absolute prediction errors of ZeitZeiger internal cross-validation models built on either RNA-Seq (blue) or NanoString 
data (red) obtained from the same RNA preparations. Platform comparison was performed for 4 types of predictors of either internal or external time by 
1- or 2-sample mRNA abundance profiles (n = 136).
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1) are similar to those of the internal time predictors. Likewise, the 
1-sample (MdAE = 1.4–1.6 hours, IQR = 1.8–2.0 hours) and 2-sam-
ple methods (MdAE = 1.2–1.4 hours, IQR = 2.3–2.4 hours) perform 
comparably. The global gene sets of all predictors are shown in 
Figure 2B. The global gene set of a predictor aggregates all genes 
identified by ZeitZeiger for prediction (biomarkers) across the 
internal cross-validation runs. For reasons of comprehensibility, 
the composition of the global gene sets will be specified in the con-
text of migration to the NanoString platform (stage 2).

Together, our results indicate that monocyte transcriptome 
time series data are well suited to extract time-telling genes with 
internal cross-validation performance similar to that of previous 
studies (21, 22). However, the MdAEs as well as the frequencies of 
predictions with an error ≥1 hour indicate that the accuracy of pre-
dictions can still be improved, since for internal time it is below the 
accuracy established by the gold standard saliva melatonin radio-
immunoassay that was used to determine DLMO in our study 
cohort (30 minutes to 1 hour; refs. 16, 17).

Stage 2: Platform migration — selection of a candidate biomark-
er set for internal time. Following the biomarker extraction process 
and internal validation, the next stage aimed to adapt candidate 
biomarkers (time-telling genes) to a clinically applicable assay 
platform (Figure 1A). It is crucial which and how many time-telling 
genes are selected for migration to the NanoString platform. There-
fore, we predefined the following selection criteria: (a) the final 
number of genes should be as small as possible, and (b) the genes 
selected for migration should have robust time-telling properties. 
Our selection of a candidate set of time-telling genes is based on 
the global gene sets of the best-performing predictors (Table 1 and 
Figure 2B). The global gene set of a predictor aggregates the genes 
extracted by ZeitZeiger for prediction across the internal cross-val-
idation runs. In the case of leave-one-subject-out cross-validation, 
as performed here, the number of cross-validation runs equals the 
number of subjects (n = 10). Since our predictors use 2 SPCs for pre-
diction, the maximal times a gene can be identified is N × nSPC = 
20. Figure 2B summarizes the global gene sets of the best-perform-

To evaluate the performance of the predictors, we followed a 
leave-one-subject-out cross-validation approach. To this end, the 
predictors were trained with data from all subjects except one, and 
internal/external times of the samples from this left-out subject 
were subsequently predicted. This was repeated for all subjects. 
Moreover, cross-validation was always done for 9 combinations 
of ZeitZeiger’s 2 main parameters sumabsv and nSPC. Briefly, 
sumabsv controls how many genes form each sparse principal 
component (SPC), and number of SPCs (nSPC) determines how 
many SPCs are used for prediction, i.e., the higher the sumabsv 
or nSPC, the more genes are needed for prediction. All 4 types 
of predictors performed comparably (Figure 2A and Table 1) in 
terms of optimal parameter combination (nSPC = 2, sumabsv = {2, 
3}) and mean number of genes used for prediction (12–15 genes 
for sumabsv = {2} and 30–35 genes for sumabsv = {3}). As a mea-
sure of accuracy, we use the median absolute difference between 
the predicted and the observed (internal or external time) time 
stamps and its interquartile range (IQR). Hereafter, for simplicity, 
we abbreviate median absolute difference as MdAE. The accura-
cy achieved in predicting internal time is similar for the 1-sample 
(MdAE = 1.6 hours, IQR = 2.4–3.2 hours) and the 2-sample method 
(MdAE = 1.4–1.7 hours, IQR = 1.9 hours) (Figure 2A and Table 1); 
differences between the 2 methods are not statistically significant 
(Benjamini-Hochberg adjusted P value of pairwise Wilcoxon test 
> 0.05). With 53.7%–59.6% of the predictions showing an error of 
≤2 hours, our predictors’ performances are comparable to those of 
previously published internal cross-validation predictors (21, 22). 
The MdAEs show no significant variation over the entire constant 
routine (Kruskal-Wallis test on 3-hour time bins, P > 0.05) for any 
of the predictors, indicating that the cumulative sleep deprivation 
experienced by the subjects does not affect prediction accuracy. 
Likewise, there is no statistically significant difference in terms of 
MdAE between samples obtained during day 1 (0–24 hours) and 
day 2 (24–40 hours) of the constant routine (Mann-Whitney U test, 
P > 0.05). The accuracies of the external time of day predictors 
(MdAE = 1.2–1.6 hours, IQR = 1.8–2.4 hours; Figure 2A and Table 

Table 1. Best-performance internal cross-validation predictors built on the BOTI RNA-Seq or NanoString data sets

Predictor (time) Assay Data source Parameters 
(sumabsv, nSPC)

Number of genes 
(mean ± SD)

MdAE [IQR] AE ≤ 1 h (% of 
samples)

AE ≤ 2 h (% of 
samples)

Internal 1-Sample RNA-Seq 2, 2 15 ± 3 1.6 [3.2] 39.0 53.7
Internal 1-Sample RNA-Seq 3, 2 32 ± 2 1.6 [2.4] 38.2 59.6
Internal 2-Sample RNA-Seq 2, 2 12 ± 2 1.7 [1.9] 35.7 59.1
Internal 2-Sample RNA-Seq 3, 2 30 ± 3 1.4 [1.9] 40.9 58.7
External 1-Sample RNA-Seq 2, 2 14 ± 2 1.6 [2.0]A 33.8 59.6
External 1-Sample RNA-Seq 3, 2 35 ± 3 1.4 [1.8] 34.6 64.0
External 2-Sample RNA-Seq 2, 2 12 ± 1 1.2 [2.3]A 43.5 66.1
External 2-Sample RNA-Seq 3, 2 31 ± 4 1.4 [2.4]A 40.9 64.3
Internal 1-Sample NanoString 1, 2 2 ± 0 0.9 [1.2] 55.2 79.2
Internal 1-Sample NanoString 2, 2 14 ± 1 0.8 [1.1] 59.7 88.3
Internal 1-Sample NanoString 3, 2 30 ± 1 0.8 [1.1] 59.1 87.0
Internal 2-Sample NanoString 1, 2 2 ± 0 0.8 [1.1]A 61.4 85.6
Internal 2-Sample NanoString 2, 2 13 ± 2 0.7 [1.0] 64.4 90.9
Internal 2-Sample NanoString 3, 2 29 ± 1 0.7 [1.0]A 61.4 90.9
ACases in which the absolute prediction error showed significant variation across 3-hour time bins (Kruskal-Wallis test P < 0.05).
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ing predictors in terms of which genes were identified and how 
often. A total of 119 genes were extracted at least once across all 
predictors. Gene ontology functional enrichment analysis revealed 
that they are significantly associated (P < 10–5) with biological 
processes related to the immune system (e.g., immune response, 
defense response, cell activation; for a full list see Supplemental 
Table 3). Furthermore, 4 genes have previously been related to the 
circadian clock (DBP, NR1D2, PER1, and PER2) (1).

Of the 119 genes, 34 were selected as candidates for migration 
to the NanoString platform because they were frequently identi-
fied during cross-validation of the individual predictors and across 
predictors: ABHD5, AGFG1, C7orf50, CD99, CLEC4E, CRISPLD2, 
CX3CR1, CYP51A1, DBP, ELMO2, FASN, FKBP4, FKBP5, FUS, 
HNRNPDL, HSPA1A, HSPH1, IRAK3, IRS2, LGALS3, LILRA5, 
MLKL, NID1, NR1D2, PER1, PER2, PHC2, RBM3, RSRP1, SER-
PINB9, SMAP2, TSC22D3, TSPAN4, and UBE2J1. Because of the 
size of the candidate set, we opted for a 48-plex configuration for 
the NanoString assay. In addition to the 34 candidate genes, we 

chose to further include 4 housekeeping genes (GAPDH, HPRT1, 
PPIA, and PSMB2), 3 clock (or clock-associated) genes that were 
not part of the RNA-Seq data set because of low expression (KLF9, 
NR1D1, and PER3), and 2 clock genes that were not identified in 
the biomarker extraction process (CRY1 and CRY2), as well as 5 
genes that showed high frequencies of detection when the RNA-
Seq data set was still incomplete (CPED1, DHRS9, HGSNAT, 
ODC1, and PLAC-8).

To assess the impact of migration of our candidate set to the 
NanoString platform on prediction accuracy, we performed plat-
form comparison. To this end, gene expression profiles using the 
48-plex NanoString gene set were acquired for all blood monocyte 
RNA preparations obtained during the BOTI study (Supplemental 
Table 4). Afterward, internal cross-validation predictors for both 
the RNA-Seq and the NanoString data sets were built using those 
genes shared by both assays (n = 41) and all samples that passed 
quality control for both assays (n = 136). We again followed the 
4-predictor leave-one-subject-out approach. Predictor perfor-

Figure 3. Composition and properties of the final NanoString BodyTime predictors. (A) One-sample and 2-sample predictors trained on the NanoString 
data of the BOTI study (n = 154 samples) for sumabsv = {1, 2} and nSPC = 2. Genes assigned to SPC1 or SPC2 as well as their loadings are shown. (B) Nano-
String expression profiles of the BOTI study’s samples (n = 154) in the SPC space of the 1-sample 12-gene predictor. Colors indicate bins of the internal 
time. (C) Time course of expression of the genes building the 1-sample 12-gene predictor. Colors indicate the individual subjects of the BOTI study. Each 
time course starts with the internal time of the first sample of a subject (M1, day 1) and ends with its last (M14, day 2).
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mances are shown in Figure 2C; predictor performance measures 
are summarized in Supplemental Table 5. Most strikingly, all pre-
dictors’ performances significantly increase after migration to the 
NanoString platform (internal time 1-sample: P < 0.0008; inter-
nal time 2-sample: P < 0.005; external time 1-sample: P < 0.0001; 
external time 2-sample: P < 0.03; Benjamini-Hochberg adjusted P 
value of pairwise Wilcoxon test). The MdAEs improved by about 1 
hour ranging between 0.6 and 0.9 hours for the different predic-
tors. Moreover, the spread of MdAEs narrowed by about a factor 
of 2, now reaching values in the range of 1 hour. Consequently, 
the frequencies of predictions with an error ≤1 hour or ≤2 hours 
increased up to >50% and >70%, respectively. Of particular note 
is that the NanoString predictors performed equally well for dif-
ferent values of sumabsv; that is, a predictor using just 2 genes for 
prediction achieved the same accuracy as a predictor using ≥12 

genes. Spearman’s correlation and Bland-Altman analyses further 
revealed that, in terms of prediction error, there was no relevant 
bias between the 2 platforms (ρ ≤ 0.33, Supplemental Figure 2; 
Bland-Altman mean difference: –0.2 to 0.5 hours, Supplemental 
Figure 3). Taken together, the migration of our candidate set to the 
NanoString platform was not only successful, but in fact signifi-
cantly improved its performance.

After migration of the candidate set of time-telling genes to 
the NanoString platform, we sought to establish and validate a 
final assay to assess internal circadian time. By means of internal 
cross-validation (leave-one-subject-out approach), we first iden-
tified the optimal parameter values for ZeitZeiger-based predic-
tion of internal time in the NanoString data set of the BOTI study. 
This analysis differed slightly from the one performed for plat-
form comparison, in that here all genes (n = 44) and all samples 

Figure 4. External validation and per-
formance of the NanoString BodyTime 
predictors. (A) Cumulative frequency 
distributions of the absolute prediction 
errors of the 1-sample and 2-sample 
NanoString BodyTime predictors when 
they were applied to the VALI study data 
set. In the case of the 1-sample assay, the 
internal time stamps of all morning (M1) or 
afternoon (M2) samples were predicted; in 
the case of the 2-sample assay, the time 
stamp of the sample ratio was predicted 
(M1/M2). Proportion refers to the number 
of predictions with an absolute error that 
is less than or equal to the specified value 
divided by the total number of predictions 
(1-sample, M1: n = 28; 1-sample, M2: n = 28; 
2-sample, M1/M2: n = 28). (B) Correlation 
of DLMO estimated by the BodyTime 
predictors and DLMO derived from saliva 
melatonin concentrations (gold standard) 
assayed by RIA; circular Pearson correlation 
coefficients (r) and P values are indicated.  
(C) Bland-Altman analysis of the bias 
between DLMO derived from saliva mela-
tonin profiles and BodyTime estimations. 
The dashed horizontal line indicates the 
mean of the differences (bias); dotted lines 
represent the upper and lower limits (mean 
of the differences ± 2 SDs) with their 95% 
confidence intervals shaded light gray. The 
morning sample of 1 subject was excluded 
from A–C because its 12-gene predictor 
maximum likelihood curve was ambiguous.
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and Supplemental Table 6). In addition, in contrast to the BOTI 
study, in which we chose a controlled laboratory setting (constant 
routine), now we decided on a setting that better reflected real-life 
conditions: subjects of the VALI study were allowed to sleep, to 
eat meals, and to be exposed to light at their habitual times. Most 
importantly, however, all subjects were classified as extreme or 
moderate early or late chronotypes (based on questionnaires; see 
Methods) before inclusion in the study to characterize the predic-
tion range of the BodyTime assay with respect to chronotype.

For each subject, 2 blood samples were taken (in the morning 
and 6 hours later in the afternoon), monocytes were sorted, and 
mRNA abundance profiles against the 48-plex NanoString gene 
set were acquired (Supplemental Table 4). To assess and com-
pare the prediction of internal time by the 4 BodyTime predic-
tors trained on the BOTI study data set, we applied them to the 
mRNA abundance profiles acquired during the independent VALI 
study (Figure 1C) (note that external time prediction is not mean-
ingful for extreme chronotypes since their individual DLMOs 
are spread over ~9 hours; Supplemental Table 6). The 1-sample 
2-gene and 12-gene BodyTime predictors applied to the VALI 
study morning samples achieved the best prediction accuracy of 
internal time (Figure 4A and Table 2). With MdAEs of 0.54 hours 
(IQR = 0.82 hours) or 0.69 hours (IQR = 0.87 hours) and 100% or 
96.3% of samples showing an error of ≤2 hours, both predictors 
performed as well as they can, considering that the error of the 
gold standard reference method (DLMO determined from saliva 
melatonin concentrations measured by radioimmunoassay) itself 
lies between 0.5 and 1 hours (16, 17). The agreement of our Body-
Time predictors with the current gold standard is further empha-
sized by the high (circular Pearson r ≥ 0.9) and significant (P < 
0.0001) correlation of DLMO estimated by our predictors with 
DLMO determined from saliva melatonin concentrations (Fig-
ure 4B). Moreover, Bland-Altman analyses showed that there is 
no systematic difference between the 2 methods (Bland-Altman 
mean difference: –1.02 to 0.24 hours; Figure 4C and Supplemen-
tal Figure 6). Application of the 1-sample BodyTime predictors to 
the afternoon samples resulted in a small but statistically insig-
nificant loss of accuracy in terms of MdAE (2-gene: 0.99 hours; 
12-gene: 0.80 hours). Likewise, the accuracies of the two 2-sam-
ple predictors (2-gene: 0.75 hours; 13-gene: 0.74 hours) were 
somewhat better than those of the 1-sample predictors, with the 
difference not being statistically significant. Furthermore, the 
accuracy of prediction does not depend on the phase of entrain-
ment (Supplemental Figure 7).

that passed quality control were considered (n = 154 in 11 subjects) 
and not only those that are also present in the RNA-Seq data set. 
Regarding accuracy and optimal parameters (nSPC = 2, sumabsv = 
{1, 2}), the results of the final 1-sample and 2-sample assays’ inter-
nal validation were essentially identical to those described above 
for platform comparison (for a detailed view on performance mea-
sures and a description of the global gene sets, see Table 1 and Sup-
plemental Figure 4, respectively).

Using the identified optimal parameter combinations, we next 
trained 2 final internal time predictors on all samples in the 1-sam-
ple and 2-sample NanoString data set of the BOTI study (Figure 
3A). Both the 1-sample and the 2-sample predictor trained with 
sumabsv = 1 are formed by just 2 genes (NR1D2 and PER2). The pre-
dictors trained with sumabsv = 2 comprise 12 genes (SPC1: NR1D2, 
PER3, NR1D1, LGALS3, PER2, ELMO2, FKBP4, HSPH1, CRY1; 
SPC2: CRY1, PER2, CRISPLD2, KLF9, PER1) and 13 genes (SPC1: 
NR1D2, PER3, NR1D1, LGALS3, TSPAN4, FKBP4, ELMO2, CRY1; 
SPC2: CRY1, PER2, CRISPLD2, CPED1, CX3CR1, KLF9, ELMO2, 
PER3), respectively. More importantly, the 1-sample and 2-sample 
predictors show a strong overlap in terms of genes that form SPC1 
and SPC2, emphasizing the high time-telling capacity of these 
very small sets of genes. In line with this, the expression levels of 
the identified genes show consistent circadian oscillations in each 
subject of the BOTI study (Figure 3C). Interestingly, the graphi-
cal illustration of the course of SPC1 and SPC2 over internal time 
resembles a clock (12-gene 1-sample predictor, Figure 3B; for the 
other predictors, see Supplemental Figure 5, B–D). When plotted in 
the 2-dimensional SPC space, the BOTI study’s samples describe a 
virtually perfect circle with the progression of internal time follow-
ing an anti-clockwise trajectory. Such behavior is observed for each 
individual subject (Supplemental Figure 5A) and might form the 
basis for future personalized approaches to detect perturbations of 
the circadian clock in humans. Taken together, we established not 
1 but 4 final BodyTime predictors that all show comparably high 
accuracy and use a very small set of genes.

Stage 3: External validation of the final BodyTime assay in an 
independent study. Predictors often perform better on data they 
were built on than on independent samples (30). Therefore, it is 
essential to validate them externally before implementation for 
clinical or research use. We thus sought to validate the final Body-
Time predictors in an independent study (VALI study). In contrast 
to the BOTI study, the VALI study used a broad cohort design (11 
male plus 17 female subjects; mean age 26.9 ± 5.7 years, range 18–41 
years; mean DLMO, 21:04 ± 2:08, range 16:42–00:28) (Figure 1C 

Table 2. External validation of the BodyTime predictors in the independent VALI study

Predictor Type of validation sample Absolute prediction error  
(median [IQR])

Absolute prediction error ≤ 1 h  
(% of samples)

Absolute prediction error ≤ 2 h  
(% of samples)

1-Sample, 12-gene Morning 0.69 [0.82] 63.0 96.3
Afternoon 0.80 [0.62] 60.7 92.9

1-Sample, 2-gene Morning 0.54 [0.87] 71.4 100.0
Afternoon 0.99 [1.00] 50.0 78.6

2-Sample, 13-gene Morning/afternoon 0.74 [1.10] 60.7 92.9
2-Sample, 2-gene Morning/afternoon 0.75 [0.72] 64.3 92.9
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to our success in establishing the BodyTime assay is difficult to 
assess, because previous attempts (while being PBMC-based) did 
not go beyond stage 1 of the biomarker development pipeline (21, 
22). That is, direct comparison cannot be made. However, some 
observations during initial biomarker extraction suggest that the 
choice of monocytes had a favorable impact on the performance 
of the assay: (a) independent of the predicted variable (internal or 
external time) and the data input format (1-sample or 2-sample), 
we observed a strong overlap in the genes extracted by ZeitZeiger 
(Figure 3A); and (b) compared with other PBMC-based internal 
cross-validation approaches with similar performance, our predic-
tors need a much smaller set of genes (12–15 vs. ~100) (22). We 
believe that these observations reflect a combination of reduced 
cellular noise of monocytes in terms of gene expression compared 
with PBMCs and an improved clinically proven gene expression 
measurement platform (NanoString), leaving the possibility that 
our final assay would perform just as well on PBMCs.

The accuracy of the BodyTime assay is the same for all 
chronotypes (Supplemental Figure 7), even the extreme ones as 
revealed in our external validation study. It is thus not affected by 
where the sleep period of a person is located during the 24-hour 
window of a day as long as sleep occurs at the person’s normal time 
(i.e., similar phase angle with respect to the melatonin rhythm and 
assuming no internal desynchronization). Archer et al. (31) pre-
viously showed that when sleep was scheduled out of circadian 
phase (i.e., out of phase with the melatonin secretion rhythm), the 
blood transcriptome was affected such that the expression of cir-
cadian genes may become arrhythmic or low-amplitude. That is, 
a predictor including such genes may fail for individuals sleeping 
out of phase, such as shift workers, with or without internal desyn-
chronization. However, when the information provided by Archer 
et al. was compared with our BodyTime predictors, the majority 
of genes were unaffected when the subjects slept out of phase 
(31). Moreover, the accuracy of our internal cross-validation pre-
dictors was not affected by the cumulative sleep loss experienced 
by the subjects enrolled in the BOTI study. We therefore assume 
that the BodyTime assay should be able to reliably assess internal 
time even in the case of circadian rhythm disorders or circadian 
misalignment that may occur during shift work. Whether Body-
Time works similarly well in patients or cohorts with known low-
er circadian amplitudes (e.g., the elderly, shift workers) and/or in 
the presence of internal circadian desynchronization remains to 
be elucidated. It is important to note that neither BodyTime nor 
DLMO determined from saliva melatonin concentrations reports 
the circadian phase of the suprachiasmatic nuclei (SCN); rather, 
BodyTime estimates DLMO, and the classical method uses mel-
atonin profiles of saliva samples to determine the time of onset 
of melatonin secretion from the pineal gland. Onset of melatonin 
secretion is a characteristic of circadian rhythms in the pineal 
gland, although in clinical circadian and sleep research it serves as 
the gold standard proxy for SCN phase.

Among the BodyTime predictors were several core clock genes 
or genes associated with the circadian clock, which is in contrast 
to biomarker sets previously suggested based on analysis of data 
acquired on high-content discovery platforms such as microarrays 
(21, 22). Since the BodyTime predictors are small in size (2 to 15 
genes), we cannot deduce any further biological meaning. How-

We succeeded in establishing, to our knowledge, the first 
externally validated assay that estimates internal circadian time 
from a single sample. Hallmarks of this BodyTime assay are its 
high accuracy, its robustness, and its low complexity in that it 
requires expression profiling of just a handful of genes. Most 
importantly, it provides a much more convenient alternative to the 
current gold standard multisample methods.

Discussion
Following a 3-stage biomarker development strategy, we estab-
lished and validated a novel assay (BodyTime) for assessing 
internal circadian time using monocyte NanoString-based gene 
expression profiles. Our BodyTime assay achieves accuracy 
(MdAE = 0.54–0.69 hours) similar to that of the current gold stan-
dard, DLMO (error: 0.5–1 hour; refs. 16, 17), while eliminating its 
shortcomings. It requires only 1 blood sample taken at any time 
during the day, and there is no need for a dim-light environment 
during sampling. Moreover, it depends on just a handful of genes 
(≤12) and is of low complexity and thus low cost (<$100 per test). 
In its current form, our assay is readily usable in a research or clin-
ical context, since the requirements regarding equipment (MACS 
sorting device) and staff are easily met. If not available in house, 
NanoString gene expression analysis can be outsourced to one of 
many external service providers. In Supplemental Table 7, we pro-
vide an Excel-based tool where users can paste their expression 
values from NanoString to get an estimate of their DLMO based 
on our 12-gene 1-sample BodyTime predictor.

What, in our opinion, distinguishes our approach from all pre-
vious attempts (21, 22) to establish an assay for internal time is that 
we focused on biomarker development strategy and decision mak-
ing instead of bioinformatics tool development. While bioinfor-
matics is certainly crucial for biomarker discovery, our approach 
demonstrates that, on its own, it is not sufficient. In fact, the suc-
cess of our BodyTime predictors can be attributed in large part to 
the decision to migrate the assay to the NanoString platform. Just 
the migration increased the accuracy of our predictors significant-
ly. We used ZeitZeiger to identify the time-telling genes for use 
in our multiplex assay for internal time. ZeitZeiger has the advan-
tage that it performs both model construction for internal time 
estimation and feature extraction to find the best multiplex for 
use in the assay. Other established methods (molecular time table, 
ref. 19; and partial least squares, ref. 22) use theoretically sub-
optimal approaches to find the best combination of time-telling  
genes. We used the maximum likelihood scheme (described in ref. 
29) to estimate internal time from a subject sample. However, oth-
er machine learning methods (LASSO and partial least squares) 
resulted in very similar internal time estimation performanc-
es (Supplemental Figure 8 and Supplemental Table 8), further 
emphasizing that biomarker discovery and the analysis platform 
(NanoString) rather than a bioinformatics approach had a greater 
influence on the success of our approach.

Our choice of monocytes as a source material was driven by a 
desire to reduce the cellular noise in the data, at the cost of a slight-
ly more expensive and complex assay. In contrast to whole PBMCs 
or other PBMC subsets, monocytes have been shown to comprise 
a homogenous blood cell population with a high-amplitude circa-
dian clock (24, 25). Whether this decision significantly contributes 
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pletion of a urinary drug screen (möLab GmbH), participants were 
prepared for the polysomnographically recorded adaptation night in 
the laboratory. Habitual sleep and wake times were determined by 
centering an 8-hour sleep episode to the averaged times of mid-sleep 
obtained at home, during the 7 days preceding the study. On day 2, 
participants stayed in their room (illuminance ~500 lx in a vertical 
direction). In the evening of day 2, i.e., 6 hours before habitual bed-
time, participants remained in dim light (<5 lx). Salivary samples 
were obtained for hormonal analyses every hour. Participants were 
then again prepared for polysomnographic recordings for the base-
line night. After wake time on day 3 (in dim light), the CR protocol 
in bed and in dim light began. An indwelling catheter was inserted 
in a peripheral vein of the left or right forearm. An isotonic electro-
lyte infusion (1,000 ml Ringer’s lactate per 24 hours) with 10,000 
IU heparin per 24 hours was continuously applied via an automatic 
infusion pump system. The following 40 hours, participants stayed 
awake in a semi-recumbent position in bed. They produced a salivary 
sample every hour, and every 3 hours, a blood sample (8 ml each) was 
drawn via indwelling catheter by a trained assistant. For this purpose, 
the indwelling catheter was flushed with 10 ml saline solution (0.9% 
NaCl), and the first 5 ml of the first drawn blood/saline mix were 
voided. During the entire CR protocol, an assistant was present and 
constant wakefulness and compliance with the protocol was verified. 
During the CR, participants were allowed to read (no light-emitting 
devices, no cell phones), play an instrument, or engage in conversa-
tion with the assistant. Wake EEG and performance data obtained 
during the CR will be reported elsewhere. After the 40 hours of 
extended wakefulness, the 8-hour recovery sleep episode started, 
and the CR protocol ended on the next morning (day 5) after wake 
time. Blood platelet concentrations were regularly controlled (at least 
3 times, according to local regulations) in order to prevent a hepa-
rin-induced thrombocytopenia. Before, during, and after the study, 
venous hemoglobin concentrations were measured in order to moni-
tor changes in blood volume concentrations.

Participants. Twelve healthy men (mean age 25.3 ± 2.6 years, range 
22–30 years; Supplemental Table 1) without any medical, psychiatric, 
or sleep disorder were included in the study. Before their first visit, 
participants completed 5 questionnaires: an entrance questionnaire, 
the Munich Chronotype Questionnaire (MCTQ), the Horne-Östberg 
Morningness-Eveningness Questionnaire (HO), the Pittsburgh Sleep 
Quality Index (PSQI), and the Seasonal Pattern Assessment Question-
naire (SPAQ). The mean scores, SDs, and ranges are shown in Supple-
mental Table 1. Participants also underwent a physical examination, 
and completed the Ishihara color plates for normal color vision and a 
polysomnographically recorded adaptation night in the sleep laborato-
ry. All participants were healthy, were nonsmokers, had no recent his-
tory of drug abuse, and were not extreme morning or evening chrono-
types. The questionnaires had to be within a normal range (as reported 
in the literature) for each participant. Exclusion criteria for the study 
were travels across more than 1 time zone within the last 3 months 
and/or shift work during the last 8 weeks before the study.

Study 2 (VALI): study design, protocol, and participants
Study design and protocol. The validation study with extreme morning 
and evening types was conducted between February and April 2017 
and consisted of 3 ambulatory visits on the same day. During the first 
visit, a venous blood sample (8 ml) was taken from a peripheral arm 

ever, although they did not make it into the final BodyTime pre-
dictors, we identified many time-telling candidate genes that are 
associated with biological processes related to the immune sys-
tem. This is in line with the previously suggested biomarker sets 
for internal time and hints at modulation of immune processes by 
the circadian clock (32).

Our assay provides a simple yet effective tool for chronotyping 
individuals from a single blood sample. This assay should there-
fore become a useful tool, for example, during drug development 
to assess whether the effectiveness and side effects of a drug are 
influenced by the administration schedule. Beyond that, it opens 
up the opportunity to investigate the dynamics of the internal cir-
cadian phase in response to environmental changes and interven-
tions (in large study cohorts), e.g., shift work, jet lag, season (pho-
toperiod), light level, and daylight savings time, as well as with age. 
In addition, the BodyTime predictor genes may have the diagnostic 
potential to assess molecular perturbations of the circadian system. 
When plotted in the SPC space defined by the BodyTime predictor 
genes, the time series data of the BOTI study describe a circle with 
the progression of internal time following an anti-clockwise tra-
jectory (Figure 3B). Hughey et al. have previously reported a sim-
ilar behavior for a predictor of external time of day in mice (29). 
Importantly, they were able to show that genetic perturbations of 
the clock result in characteristic changes in relation to the circular 
trajectory, such as axis shifts (muscle Bmal1–/–) and shrinking of the 
radius (liver Nr1d1–/– Nr1d2–/–). If this is also true for humans, the cir-
cular trajectory of our BodyTime predictors may provide the basis 
for the establishment of diagnostic tests.

In summary, our BodyTime assay is a new precision medicine 
tool that allows the personalization of diagnostics and therapy 
according to an individual’s circadian phase — an under-recog-
nized yet important physiological parameter. BodyTime is simple 
(it requires only a single blood sample taken anytime during the 
day) and highly accurate (as good as the current gold standard) 
and therefore should foster the spread of chronomedicine.

Methods

Study 1 (BOTI): study design, protocol, and participants
Study design. The 4-day laboratory study was conducted between May 
2015 and January 2016 and consisted of an adaptation and a baseline 
night in the sleep laboratory, followed by a 40-hour episode of sleep 
deprivation and an 8-hour recovery sleep episode. The entire protocol 
was carried out under constant routine (CR) conditions (<5 lx, con-
stant room temperature, semi-recumbent posture in bed, regularly 
small isocaloric snacks and water, and no time cues; ref. 28). Contin-
uous polysomnographic recordings and core body temperature mea-
surements started before the first baseline night. During the CR part, 
salivary samples for hormone analyses were collected hourly, and 
blood samples via indwelling catheter were obtained every 3 hours.

Study protocol. Participants had to keep a regular sleep-wake cycle 
7 days before the laboratory part of the study, with self-selected tar-
get bed and wake times (±30 minutes), and an approximately 8-hour 
sleep episode. Compliance was verified by activity watches (Motion 
Watch 8, CamNtech) and sleep diaries. On the laboratory admission 
day, participants had to abstain from caffeine and alcohol after 2 pm. 
They came to the sleep laboratory on the evening of day 1. After com-
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the 2–standard deviation (2-SD) method (for study 1) and the thresh-
old method (for study 2). For the 2-SD method, DLMO was defined 
as the time when melatonin concentrations exceeded 2 SDs of 3 low 
daytime concentrations. The threshold method defined DLMO as the 
time when melatonin concentrations exceeded 10 pg/ml (study 1) or 3 
pg/ml (study 2; due to higher sensitivity of the antibody used for the 
RIA [Bühlmann Laboratories]). For both methods, the “hockey-stick” 
software developed by Danilenko et al. was used (16). Both methods 
led to similar timing for DLMO. By visual inspection of the melatonin 
profiles of study 2, some melatonin concentrations in between 2 sam-
ples were very high and were considered as outliers, which might have 
happened due to remaining small food particles in between 2 samples. 
These high values were linearly interpolated before DLMO assess-
ment, which was done for a total of 14 values out of 336 (4.17%). For 
the same reason, 4 measurements (at the beginning of the study) were 
omitted (1.20%). Intra- and interassay coefficients of variability are 
given in Supplemental Table 9.

Blood collection, monocyte sorting, and RNA preparation
Eight milliliters of EDTA whole blood taken every 3 hours in the 
BOTI study and twice (6 hours apart) in the VALI study was imme-
diately processed. CD14+ blood monocytes were collected by MACS 
sort using whole-blood CD14 microbeads (Miltenyi Bio tec) and the 
Auto-MACS-Pro device. All steps were performed at 4°C according to 
the manufacturer’s instructions. Median purity of monocyte prepara-
tions (BOTI study) was 89% as revealed by analytical FACS sorting 
(CD11b+CD15– fraction; anti-CD11b: 558123, BD Biosciences; anti-
CD15: 560828, BD Biosciences). The CD14+ cell fraction was pelleted 
by centrifugation and frozen at –80°C. After completion of the entire 
time series, total RNA was isolated using TRIzol reagent (Thermo 
Fisher Scientific). Quality and quantity of isolated RNA were analyzed 
using the NanoDrop 2000c (Thermo Fisher Scientific) and the Qubit 
RNA BR Assay Kit (Thermo Fisher Scientific).

RNA library preparation
Total RNA was treated with DNase I (New England Biolabs) following 
the manufacturer’s protocol. Preparation of stranded, ligation-based, 
digital gene expression RNA libraries was modified from Shishkin et 
al. (34) as follows: 400 ng of total RNA was fragmented in FastAP 
buffer (Thermo Fisher Scientific) for 3 minutes at 94°C, dephosphor-
ylated with FastAP, cleaned (using SPRI beads, Agencourt), and then 
ligated to linker1 (5Phos/AXXXXXXXXAGATCGGAAGAGCGTC-
GTGTAG/3ddC/; XXXXXXXX is an internal barcode specific for each 
sample), using T4 RNA ligase I (New England Biolabs). Ligated RNA 
was cleaned, and 16 samples of each subject were pooled together 
into a single tube using RNA Clean & Concentrator columns (Zymo 
Research). The pooled RNA was then PolyA-selected (using oligo-dT 
beads, Invitrogen) according to the manufacturer’s protocol. Reverse 
transcription was performed for the pooled, PolyA+ samples, with 
a specific primer (5′-CCTACACGACGCTCTTCC-3′) using Affini-
tyScript Multiple Temperature cDNA Synthesis Kit (Agilent Tech-
nologies). Then, RNA-DNA hybrids were degraded by incubation of 
the reverse transcriptase mixture with 10% 1 M NaOH at 70°C for 
12 minutes. pH was then normalized by addition of a corresponding 
amount of 0.5 M AcOH. The reaction mixture was cleaned up using 
Silane beads (Dynabeads MyOne, Life Technologies), and a second 
ligation was performed, in which the 3′ end of the cDNA was ligated to 

vein at the laboratory for Medical Immunology at Charité Universitäts-
medizin Berlin (Germany). The blood sample was drawn approximate-
ly 2 hours after habitual wake time and was immediately processed. 
The participants then left the laboratory and returned after 6 hours for 
the second blood sample (8 ml). Finally, the participants came to the 
sleep laboratory 6 hours before their habitual bed time for assessment 
of circadian phase by means of DLMO. For this purpose, participants 
remained in constant sitting position in dim light (<5 lx) for 6 hours 
and provided a salivary sample every 30 minutes. They received small 
snacks and water and were allowed to read or to engage in conversa-
tion with other participants and the assistant. Twenty minutes before 
each salivary sample, participants were instructed to stop drinking/
eating and to rinse their mouth with water. After the last sample, par-
ticipants left the laboratory. As already in the first study, participants 
had to keep a regular sleep-wake cycle 7 days before the study day, 
with self-selected target bed and wake times, and an approximately 
8-hour sleep episode. Compliance was verified by activity watches 
(Motion Watch 8, CamNtech) and sleep diaries. The procedures for 
salivary samples were the same as in the first study, except that the 
sampling interval was 30 minutes for the validation study.

Participants. Extreme morning and evening types (“larks” and 
“owls”) were recruited via flyers at schools and universities in the area 
of Berlin and Potsdam. Out of 172 returned questionnaires (MCTQ, 
HO, PSQI, SPAQ, and entrance questionnaire), only participants who 
met the initial criteria for morning or evening types, based on the 
MCTQ and on HO scores, were invited for the screening visit. They 
had to have an MCTQ score (MSF-sc, i.e., local time of mid-sleep on 
free days corrected for sleep debt accumulated over the workweek) 
below 3 (i.e., extreme morning type) or higher than 6 (extreme eve-
ning type), and to be at least a moderate morning or moderate evening 
type in the HO questionnaire (HO score 59–69 or 31–41, respective-
ly). Or conversely, participants had to be an extreme morning (>69) 
or extreme evening type (<31) based on the HO score, and at least a 
moderate chronotype in the MCTQ score (i.e., <4 for morning types, 
or >5 for evening types). We also accepted 2 moderate morning types 
with an MCTQ score between 3 and 4 and an HO score between 59 
and 69 as study participants. Two participants were extreme morning 
types only in either the HO (score 77) or the MCTQ (score 6.47). Exclu-
sion criteria were medical or psychiatric disorders, recent drug abuse, 
PSQI scores higher than 10, recent shift work, and travels across more 
than 1 time zone within the last 2 months. A total of 14 morning (12 
extreme and 2 moderate) and 14 evening types (Supplemental Table 
6) completed the study. A sample size of 28 was targeted based on the 
power calculation for a power of 0.8 with an α level of 0.05 and a large 
effect size of 0.5.

Melatonin and cortisol measurement and DLMO determination
Salivary samples were obtained with Salivettes (Sarstedt AG & Co.) 
for melatonin (study 1 and study 2) and cortisol (study 1) assays. Indi-
vidual secretion profiles of both hormones during the CR (study 1) 
are shown in Supplemental Figure 9. Upon collection, each salivary 
sample was frozen at –20°C. All samples were sent for radioimmuno-
assay (RIA) to an external laboratory after study completion (study 
1: IBL International GmbH, Germany; study 2: Chrono@work, The 
Netherlands). To assess circadian phase, DLMO was calculated using 
melatonin concentrations on the first evening of the CR (study 1). 
Two different methods for determination of DLMO were applied (33): 
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Establishment and evaluation of internal time predictors  
using ZeitZeiger
To build and evaluate predictors of time based on monocyte tran-
scriptomics data, we applied the supervised learning method Zeit-
Zeiger developed and described by Hughey et al. (29) using the 
statistics environment R (40). The R package of ZeitZeiger can be 
downloaded from https://github.com/jakejh/zeitzeiger. ZeitZeiger 
extracts a time-telling gene set by means of supervised sparse prin-
cipal component analysis. The sparsity of a gene set, i.e., the num-
ber of genes it includes, is controlled by the parameter sumabsv. 
The smaller the value of sumabsv, the higher the sparsity, i.e., the 
fewer genes. To predict the time stamp of a test observation, Zeit-
Zeiger applies maximum-likelihood estimation in which the number 
of genes involved in prediction is controlled by the number of sparse 
principal components (nSPC). During both the biomarker extraction 
and the platform migration process, we trained and evaluated Zeit-
Zeiger predictors based on the BOTI study time series data sets 
(RNA-Seq or NanoString) following a leave-one-subject-out inter-
nal cross-validation strategy. The latter provides a well-established 
and convenient solution to assess a predictor’s performance within 
a single data set. For each subject, a predictor is trained on all the 
other subjects and subsequently used to predict the time stamps of 
the left-out subject’s samples. To identify the optimal parameters 
for training of a predictor, internal cross-validation was performed 
for a range of values of sumabsv = {1, 2, 3} and nSPC = {1, 2, 3}. In 
the external validation process, we trained ZeitZeiger predictors on 
the complete BOTI NanoString time series data and subsequently 
used them to predict the time stamps of the samples included in the 
VALI study. For calculation of prediction errors, we used the calc-
TimeDiff function for periodic variables provided by the ZeitZeiger 
R package; calcTimeDiff makes the error as close to zero as possible 
(for details, see ref. 29). To assess and compare the performance of 
ZeitZeiger predictors, we calculated the median absolute difference 
(MdAE) between the predicted and the observed time stamps and its 
interquartile range (IQR). ZeitZeiger predictors were trained for 2 
different formats of data input, referred to as 1-sample and 2-sample 
format. The difference between the 2 formats is the mRNA abun-
dance profile assigned to each measurement (Mi) in the time series 
(1-sample: single profile recorded at Mi; 2-sample: ratio of 2 profiles 
recorded 6 hours apart, Mi/Mi+2).

Excel-based prediction tool
For platform migration and assay validation using NanoString, we 
normalized all data (from BOTI and VALI studies) together as pre-
viously described. However, a sample-by-sample normalization 
is necessary to make predictions based on newly obtained blood 
samples profiled by NanoString. We developed such a scheme by 
replacing the first and last steps outlined previously by a combina-
tion of 2 scale factors (computed only from BOTI data) and arith-
metic mean of positive spike-in controls (of the new sample) and 
the geometric mean of the housekeepers (in the new sample only). 
We subsequently verified this scheme by confirming that predic-
tion performance on the sample-by-sample normalized VALI data 
was unchanged (Supplemental Table 12). Once a new sample is 
thus normalized, a simple look-up table allows the prediction of the 
internal time of the sample that we implement as an Excel-based 
tool (Supplemental Table 7).

linker2 (5Phos/AGATCGGAAGAGCACACGTCTG/3ddC/) using T4 
RNA ligase I. The sequences of linker1 and linker2 are partially com-
plementary to the standard Illumina read1 and read2 barcode adapt-
ers, respectively. Reaction mixture was cleaned up (Silane beads), 
and PCR enrichment was set up using enrichment primers 1 and 2 
(5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA-
CACGACGCTCTTCCGATCT-3′, 5′-CAAGCAGAAGACGGCATAC-
GAGATXXXXXXXXGTGACTGGAGTTCAGAC).

3′-End RNA-Seq screen
The libraries were 3′-end-sequenced (35) using Illumina NextSeq 500 
and the results obtained in fastq format. After quality control using 
RSeqQC (36), technical replicates for the same sample were com-
bined. 3′-End reads were aligned to the human genome (hg19) using 
STAR (37) with the following settings: --outFilterMultimapNmax 1 
--clip3pNbases N (where N was chosen between 0 and 8 if there was 
a loss of quality at the end of reads), and saved as.bam files. Expres-
sion counts of high-quality reads for each gene were then extracted 
from the.bam files using the End Sequence Analysis tool (ESAT; 
version 1) (38) with the following command: java -jar -Xmx20g esat.
v1.jar -annotations (hg19 RefSeq annotation) -wExt 2000 -quality 20. 
We retained only genes with at least 2.5 counts per million in at least 
half the number of samples of each subject. The resulting count table 
was normalized for library size and composition using the trimmed 
mean of M-values (default method in the edgeR package; ref. 39) and 
log2-transformed using the cpm function in edgeR to obtain the whole 
transcriptome RNA-Seq time series data (in log2 counts per million). 
Raw data have been deposited in the NCBI’s Sequence Read Archive 
(SRA; SRP133635). The alignment statistics of the RNA-Seq are pro-
vided in Supplemental Table 10.

Rhythmicity analysis
Rhythmicity analysis was performed (Supplemental Figure 1) on the 
raw count data obtained from the ESAT tool (see previous section). 
The count data were analyzed using the limma-voom R package, 
which accounts for the dependence of noise in the read counts on the 
mean gene expression. We assess rhythmicity by fitting cosine curves 
with a 24-hour period with respect to external time to the count data. 
After FDR correction using Benjamini-Hochberg, genes were called 
circadian if their adjusted P value was below 0.05. This analysis was 
repeated for each subject independently.

NanoString 48-plex data acquisition
A 48-plex NanoString panel was designed comprising 44 candi-
date time-telling genes and 4 control housekeeping genes (GAPDH, 
HPRT1, PPIA, PSMB2). The custom-designed probes included a 3′-end 
biotinylated capture probe and a 5′-fluorescence-barcoded reporter 
probe for each gene target (Supplemental Table 11). Hybridization of 
the probes and 250 ng monocyte RNA was carried out according to the 
manufacturer’s instructions. Raw expression data were obtained using 
a NanoString nCounter Digital Analyzer (NanoString Technologies). 
Normalization was carried out in 3 steps according to the Bioconduc-
tor package NanostringQCPro: (a) normalization by the arithmetic 
mean of the positive spike-in controls, (b) subtraction of the mean of 
the negative controls, and (c) normalization by the geometric mean of 
the 4 housekeeping genes. For all further downstream analyses, data 
were log2-transformed.
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day 2 (24 to 40 hours) of the sampling period. Differences between 
predictors in terms of accuracy (MdAE) were assessed by pairwise 
Wilcoxon tests with P values being corrected for multiple comparison 
according to Benjamini-Hochberg (42). Bland-Altman and circular 
Pearson correlation analyses were performed to evaluate the level of 
agreement in terms of prediction accuracy between both different 
platforms (RNA-Seq, NanoString) and different assays (saliva mel-
atonin profiles, BodyTime assay). For Bland-Altman analyses, the R 
package BlandAltmanLeh was used. For circular Pearson correlation 
analysis, the R package circStats was used. P values lower than 0.05 
were considered as statistically significant. All statistical analyses 
were performed in the statistics environment R (40).
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The 2 studies were conducted according to the tenets of the Declara-
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Functional enrichment analysis
Gene ontology (GO) analysis of the 119 selected time-telling genes 
(biomarkers) was carried out using the topGO package in R within the 
biological process (BP) categorization of the genes with P less than 
0.01, and annotated within the org.Hs.eg.db database in Bioconductor. 
We used a custom (monocyte-specific) background gene set for the 
analysis consisting of the 9,115 genes identified as expressed across all 
subjects in our RNA-Seq analysis.

Prediction using LASSO and partial least squares regression
Similar to the ZeitZeiger-based predictors, prediction models were 
constructed using least absolute shrinkage and selection operator 
(LASSO) and partial least squares regression (PLS) in order to test the 
relative performance of different machine learning algorithms (41). 
Both approaches found linear predictors (of time in our case) based 
on the features (genes). The use of either approach required trans-
forming time (the predicted quantity) to a pair of predicted variables 
[cos(2πt/24), sin(2πt/24)], like in ref. 22. The predicted time was 
finally obtained by inference of time from the 2 predicted compo-
nents using the arctan function. For the 2-sample assay, we predicted 
the difference of the log2-normalized data at the 2 time points (that 
is, the ratio of the data before log2 normalization), as this is a more 
optimal approach with PLS and LASSO. To find the optimal LASSO 
model, we used the glmnet R package under the “mgaussian” family. 
Similarly, for the PLS model we used the pls R package with standard 
settings. Both internal cross-validation using leave-one-subject-out 
cross-validation of the BOTI NanoString data, and predicted DLMO 
for the VALI data, were computed by selection of optimal models 
using cross-validation with the “one-sigma” selection criteria (avail-
able in the packages). The analysis thus closely parallels the ZeitZei-
ger-based analysis of the NanoString data.

Statistics
The subjects included in the BOTI study experienced cumulative sleep 
deprivation over the sampling period of 40 hours. To assess whether 
the accuracy (MdAE) of ZeitZeiger predictors showed variation across 
sampling time, a Kruskal-Wallis test on 3-hour time bins was per-
formed. In addition, a Mann-Whitney U test was performed to test for 
differences between samples obtained during day 1 (0 to 24 hours) and 
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