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Introduction
Telomeres may at first glance simply appear as geographic bound-
aries at chromosome ends. However, there is mounting evidence 
that disturbances in telomere length, at short and, as we will 
discuss here, long extremes, are linked to disease susceptibility. 
Telomere DNA is a repetitive hexamer of TTAGGGs that is bound 
by a specialized protein complex known as shelterin (1–3). Telo-
merase synthesizes new telomere DNA to offset the shortening 
that normally occurs during DNA replication (4, 5). Telomerase 
has two essential components: the telomerase reverse transcrip-
tase (TERT) uses a template within an intrinsic telomerase RNA 
component, TR (also known as TERC), to add telomere repeats 
onto the 3′ ends of chromosomes (6–9). Shelterin proteins pre-
vent chromosome ends from fusing and from being recognized as 
double-strand breaks (3). They also regulate telomerase access to 
the telomere, and promote telomere repeat addition processivity 
by allowing TERT to use a relatively short template in TR to itera-
tively synthesize longer telomere tracks (10–12). As we will discuss 
here, disorders of telomere length are increasingly appreciated as 
causing clinically recognizable disease processes (13). The short 
telomere syndromes are now phenotypically and genetically well 
characterized (14–19). This knowledge is increasingly integrated 
into clinical algorithms, especially for patients with lung disease 
and bone marrow failure (20, 21). Here, we focus on emerging 
evidence, from cancer-prone families as well as from population- 

based studies, linking germline variants that promote telomere 
lengthening to cancer susceptibility. We contrast the genetic basis 
of the two extreme telomere length phenotypes and highlight how 
recent human-focused studies provide critical insights into the 
fundamentals of cancer etiology.

Telomerase is limiting
The foundational understanding of the role of telomeres and telo-
merase in disease has been rooted in curiosity-driven science, in 
simple systems and model organisms (22). One major theme that 
emerges at the intersection between this fundamental science and 
disease genetics is that relatively small, subtle changes affecting 
telomerase abundance or function can influence telomere length 
and, in turn, disease risk (23). The exquisite sensitivity of telomere 
length to these small changes is related to the fact that telomerase is 
in very low abundance and its activity is tightly regulated. In yeast, 
mice, and humans, the number of telomere ends exceeds the num-
ber of telomerase molecules (refs. 24, 25, and reviewed in refs. 23, 
26). The low levels of telomerase set up a system wherein not all telo-
meres are elongated during a given cell cycle even when telomer-
ase is normally expressed (27). There are at least three additional  
limits on telomerase activity. The first is that the essential telomer-
ase components, TERT and TR, are expressed at very low levels 
relative to other proteins and RNAs (e.g., refs. 24, 28). Even other 
factors involved in telomerase biogenesis, such as nuclear assembly 
factor 1 (NAF1), which promotes shuttling of TR to the nucleolus for 
assembly with TERT, show haploinsufficiency for telomere length 
(28). Thus, although only 10% of human genes are estimated to 
show haploinsufficiency, many of the telomerase and related genes 
that have been heretofore linked to Mendelian disease, including 
TERT, TR, and NAF1, do so (14, 28–30). A second limit is that telo-
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maintenance genes. Their onset is determined in great part by the 
severity of the short telomere defect (20, 43). Short telomere syn-
dromes generally have two primary clinical presentations. A more 
severe form manifests in infants and children; it causes disease in 
high-turnover tissues and primarily recognized as immunodeficien-
cy, bone marrow failure, and enteropathy (16, 19, 20, 44). Adult- 
onset short telomere syndromes are more common and account 
for at least 90% of presentations (45). They manifest most fre-
quently as idiopathic pulmonary fibrosis (IPF) and other telomere- 
related lung disease (45). These telomere-related lung disorders in 
the vast majority show autosomal dominant inheritance and may 
appear as emphysema in smokers (45, 46). IPF affects 100,000 indi-
viduals in the United States alone, and at least 50% of IPF patients 
have telomere length in the lowest decile of the population (45). In 
one-third of families with pulmonary fibrosis, a mutation in telomer-
ase or telomere-related genes is detectable (45). The high frequency 
of telomere defects in IPF and the prevalence of this disease make 
IPF the most common of the human short telomere phenotypes.  
A subset of adult IPF patients show extrapulmonary short telo-
mere syndrome features including bone marrow failure, immuno-
deficiency, and liver disease; their recognition is critical for the diag-
nosis and management of these patients (18, 21, 41–43, 47).

Cancer is relatively rare in short telomere 
syndromes
Cancer is an overall relatively rare complication of short telomere 
syndromes and affects approximately 10% to 15% of patients (48). 
This rate is far lower than in other common cancer-prone syn-
dromes, such as Li-Fraumeni, which have lifetime risks around 
90% (49). The short telomere cancer spectrum is also restricted 
to mostly hematologic cancers, the most common being myelo-
dysplastic syndrome, an age-associated clonal disease of the bone 
marrow. This low cancer incidence lies in contrast to predictions 
from cell-based models, which reported spontaneous immortal-
ization and transformation of cells after short telomere–induced 
senescence (50). These clinical observations suggest that, in the 
presence of an intact DNA damage response, as is the case in most 
patients with short telomere syndromes, degenerative disease 
is the predominant phenotype and leads to progressive failure of 
hematopoiesis, T cell immunity, and end-stage lung-liver disease. 
Below we will highlight how these clinical findings support what 
has been documented in nearly all tumor-prone mouse models.

The genetic causes of short telomere syndromes
Understanding the genetic mechanisms by which short telomere 
syndromes arise is particularly relevant for our Review, because 
mutations in some of the same genes have also been linked to 
a cancer-prone state, which we hypothesize is long-telomere 
mediated. Thirteen genes have been implicated to date in Men-
delian short telomere syndrome genetics; they explain 50% to 
70% of cases (Figure 1A). Two of these genes are also mutated 
in cancer-prone families. In general, the vast majority of muta-
tions cause telomere shortening by depleting the abundance 
of telomerase, disturbing its catalytic functions/processivity, 
or interfering with its recruitment to the telomere. They affect 
the telomerase holoenzyme itself (TERT, TR, DKC1), adaptors 
of the dyskerin complex (NHP2, NOP10), genes that affect TR 

merase expression is also tightly regulated. After early embryonic 
development, the TERT promoter is repressed in most somatic 
cells, likely through promoter hypomethylation (31–33). The repres-
sive effect of this hypomethylation on TERT expression is counter to 
effects in most other contexts. The timing of TERT silencing leaves 
a small window during early development for telomeres to be elon-
gated (34), and makes telomere length highly heritable and, in great 
part, influenced by parental telomere length (27, 35, 36). A third 
check on telomere elongation is that even when expressed, the tim-
ing for telomere repeat addition is cell cycle–regulated and restrict-
ed to late S phase (reviewed in ref. 37). For all these reasons, telo-
meres shorten even in telomerase-expressing somatic cells, such 
as hematopoietic progenitors and T cells (26). These checks favor 
a system where telomere shortening is an overall general default, 
and as we discuss here, evidence linking long telomeres to the risk 
of multiple cancers underscores the tumor-suppressive advantages 
of these checks.

Telomere length has definable upper and lower 
boundaries
One of the major advances in understanding the role of telomere 
length in human disease has been the standardization of telo-
mere length measurement methods that more robustly define 
absolute “short” and “long” telomere thresholds (20, 38). Rely-
ing on a method that measures telomere length in distinct leuko-
cyte lineages using combined flow cytometry and fluorescence in 
situ hybridization (flowFISH), there is outstanding concordance 
and reproducibility across laboratories (20, 38, 39). These flow-
FISH telomere length measurements show that human telomere 
length has a definable normal range with discrete upper and low-
er boundaries (20). This type of telomere length analysis has the 
advantage of establishing age-, percentile-adjusted values rather 
than relative comparisons of “longer” and “shorter” descriptors. 
This advance has made interpretation of telomere length for pre-
cision medicine use possible and analogous to other clinical mea-
surements (e.g., white blood cell count) wherein the normal range 
is broad, but extreme values, relative to healthy controls, may be 
associated with the risk of certain pathologies. For this Review, 
“telomere length” refers to the mean length as measured in leu-
kocytes by flowFISH and reported as an age-adjusted percentile. 
Within each cell, the shortest telomere(s) signal the DNA dam-
age response associated with cellular senescence and apoptosis 
(40). Remarkably, however, the mean telomere length, in defined 
and limited clinical contexts, is an outstanding surrogate and can 
generally distinguish individuals with germline defects in telo-
mere maintenance from their relatives (15, 41). As such, the mean 
telomere length as measured in leukocyte subsets by flowFISH is 
used widely as a diagnostic and prognostic tool in patients sus-
pected to have short telomere syndromes (18, 20, 42).

The human short telomere syndrome phenotype
The cancer-prone state associated with telomere lenghtening con-
trasts with that of short telomere syndromes. To facilitate these com-
parisons, we will first briefly review the better-described short telo-
mere diseases. Short telomere syndromes encompass a continuum  
of clinical presentations that manifest from infancy to late adult-
hood (26). They are caused by mutations in telomerase and telomere 
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Familial cancers caused by telomere-lengthening 
mutations
Evidence that long telomere length confers a longevity advan-
tage came initially from studies of primary cultured fibroblasts 
in which cells with longer telomeres had longer replicative poten-
tials (52). Moreover, exogenous TERT expression was sufficient 
to bypass cellular senescence and immortalize primary cells (53). 
In humans, evidence that telomerase upregulation confers a risk 
of familial cancer was first documented in a five-generation auto-
somal dominant family with cutaneous malignant melanoma 

biogenesis and localization (PARN, NAF1, TCAB1), and regula-
tion of telomerase recruitment to the telomere as well as proces-
sivity by shelterin (TPP1, also known as ACD, and likely TINF2; 
ref. 51). There are also mutations in genes that are thought to 
affect telomere replication (RTEL1) and telomere lagging strand 
synthesis (CTC1, STN1). The genetic basis of short telomere 
syndromes has been reviewed elsewhere (13, 28). As further 
discussed below, for TERT and TPP1, mutations that predict 
telomere lengthening are also associated with high-penetrance 
familial cancer syndromes (13).

Figure 1. Schematic of mutant telomerase and telomere genes in Mendelian short and long telomere syndromes and model for TPP1 allele–specific 
effects on telomere length. (A) Components with known mutations are shown in color, and their telomere function is indicated above each group. 
Thirteen genes have been identified, with the short telomere syndrome associations marked by a subscript S. Four genes are associated with long telo-
mere syndrome phenotypes and are marked by a superscript L. Adapted with permission from Current Opinion in Genetics & Development (13). (B) The 
left panel shows the state of telomere length maintenance normally. The middle panel shows how in-frame deletions in the TEL patch interfere with 
TERT recruitment and processivity, provoking telomere shortening. The right panel shows a model for how cancer-associated mutations may promote 
telomere maintenance in cancer-prone families. TPP1 deletions or missense mutations in the POT1-interating domain are predicted to affect POT1’s 
telomere-binding capacity, allowing TERT to elongate more efficiently. The latter is hypothesized to have a net effect of telomere lengthening and/or 
telomere maintenance.
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4% of CDKN2A/CDK4-negative CMM families (60% of familial 
CMM cases fall into this category; refs. 59–61). Mutations in TPP1 
and RAP1 account for another 2% of this familial CMM subset 
(62). Table 1 summarizes these associations.

Beyond melanoma, there is also evidence of shelterin gene 
mutations in other cancer-prone families. Among chronic lym-
phocytic leukemia (CLL) multigenerational families, mutations 
in POT1, TPP1, and RAP1 are found in nearly 10% of cases (63). 
Rare POT1 mutations have also been reported in families with 
glioma (<1%; ref. 64); cardiac angiosarcoma and Li-Fraumeni–
like syndrome (27%, 6 of 22 TP53-negative families; refs. 65, 
66); colorectal cancer (0.3%, 3 of 1051 families; ref. 67); and 
Hodgkin lymphoma (5%, 2 of 41 families; ref. 68). These are 
generally loss-of-function mutations and are predicted to cause 
telomere lengthening. While these mutations were identified in 
familial forms of a single cancer, mutation carriers showed other  
malignancies, suggesting they confer a broader cancer-prone 
state (54, 58, 66). In support of this idea, a recent study reported  
an Ashkenazi founder POT1 mutation that interfered with 
POT1’s DNA-binding capacity; it simultaneously conferred sus-
ceptibility to both melanoma and CLL (69). Because the most 
prevalent cancers in patients with these TERT and shelterin 
mutations are melanoma and CLL, we propose that these can-
cers define core long telomere cancer phenotypes.

Germline mutations in TERT and shelterin are 
telomere-lengthening
How do mutations in the TERT promoter and shelterin genes pro-
mote the risk of melanoma and other cancers? Some studies have 
suggested that the effect is because of telomere deprotection (65), 

(CMM) that was found to carry a mutation in the TERT promoter 
(54). This gain-of-function mutation upregulates TERT transcrip-
tion (54). The mutation, located 57 bases upstream of the TERT 
transcriptional start site, functions similarly to two other common 
recurrent somatic TERT promoter mutations (54, 55). These pro-
moter mutations create a de novo E26 transformation–specific 
(ETS) transcription factor family binding site that removes the 
repressive state on TERT by allowing interaction with an abundant 
GA-binding protein (GABP) transcription factor to promote TERT 
transcription (54, 56, 57). A second melanoma family was recently 
found to carry another TERT promoter mutation (58), but overall, 
the prevalence of germline TERT promoter mutations in familial 
melanoma is less than 1% (58). The importance of telomere main-
tenance to melanoma susceptibility is, however, highlighted in the 
fact that germline heterozygous mutations in three other telomere 
genes, POT1, TPP1, and RAP1 (also known as TERF2IP), all shel-
terin components, have been linked to familial melanoma (Table 
1). POT1 mutations are most common, and they account for 2% to 

Figure 2. Shared SNPs identified in GWAS near telomere genes are associated with both telomere length and disease risk, but the directionality of the 
effect is allele-dependent. (A) intersection of shared SNPs across GWAS for leukocyte telomere length, lung adenocarcinoma and idiopathic pulmonary 
fibrosis. The shared SNPs fall near telomere maintenance genes. The alleles for each SNP have differential effects on telomere length with the effect size 
shown on base pairs. rs2736100 is in intron 2 of TERT. rs755017 is 140 kb downstream of the RTEL1 transcription start site in exon 2. rs7675998 falls 40 kb 
upstream of the NAF1 transcription start site. (B) Schematic forest plot shows the odds ratio of disease risk with short and long telomere SNPs such as 
those shown in the table in A. Data in B are adapted with permission from JAMA Oncology (88).

Table 1. Telomerase and shelterin genes mutated in familial 
melanoma

Mutant gene Mutation type Effect on telomerase
TERTA Gain of function ↑ TERT transcription
POT1 Loss of function ↑ Telomerase access
TPP1/ACDA Loss of function ↑ Telomerase access
RAP1/TERF2IP Loss of function ↑ Telomerase access
AMutated in short telomere syndromes.
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detail below, there is an additional independent body of genetic 
epidemiology showing that long telomere length alone is associat-
ed with increased risk of the same cancers (i.e., melanoma, glioma, 
CLL) that are seen in cancer-prone families with TERT promoter and 
shelterin mutations.

Different TPP1 mutations cause distinct  
disease phenotypes
The delicate regulation of telomere length is particularly high-
lighted in the case of TPP1 mutations, where two distinct types of 
heterozygous, haploinsufficient mutations show opposing disease 
phenotypes. Mutations in the TEL patch, which is required for both 
TERT recruitment and processivity, cause an autosomal domi-
nant short telomere syndrome phenotype (11, 71, 72). By contrast, 
mutations identified in cancer-prone families fall in the POT1- 
interacting domain and are predicted to interfere with POT1 bind-
ing to the telomere (10, 73). This would have the functional effect 
of removing the negative regulation on telomere elongation, mak-
ing the telomere more accessible, and have a net effect of telomere 
lengthening. A schematic of these TPP1 allele–specific mutations 
and their putative effects on telomere length is shown in Figure 1B.

Long telomere–associated SNPs increase  
cancer risk
Although the role of germline telomerase and shelterin mutations 
in familial cancer may at first appear limited to small subsets of 
cancer patients, there is epidemiologic evidence supporting long 
telomere length itself as being associated with cancer risk. This has 
been shown for melanoma and lung adenocarcinoma as well as  
other cancers (74–76). Larger genome-wide association studies 
(GWAS) further assert these associations (77). GWAS are designed 
to identify common variants that play a role in disease risk (78), and 
while the associated single nucleotide polymorphisms (SNPs) may 
not in themselves be pathogenic, they may be in cis with genes that 
are. GWAS for melanoma, glioma, and CLL risk have all identified 
SNPs near telomere maintenance genes, including TERT, RTEL1, 
NAF1, and POT1 (79–82). In a meta-analysis of 372 GWAS data sets, 
SNPs near TERT were one of the most common recurrent findings 
in cancer studies (83). One important pattern emerges from exam-
ining these cancer GWAS. They show that the cancer-associated risk 
alleles are also the long-telomere alleles identified in telomere-length 
GWAS. A Danish study of more than 95,000 individuals found that 
long telomere–associated SNPs identified in GWAS were also asso-
ciated with increased risk of cancers, especially melanoma and gli-
oma (84). These data linking genetic variants with long telomere 
length, along with the data showing that long telomere length itself is  
cancer-associated, establish that genetically determined long telo-
mere length is a risk factor for a subset of human cancers.

Differential effects of short telomere– and long 
telomere–associated alleles
Another set of analyses illustrates how differential effects of com-
mon alleles affect disease risk. An initial review of the data may show 
that hits from GWAS for leukocyte telomere length, IPF, and lung 
cancer converge on hits near telomere-related genes (Figure 2A). 
To better illustrate this, we will focus on SNPs near TERT, RTEL1, 
and NAF1, which were identified in studies on telomere length, IPF, 

but this model would not explain the fact that these cancers devel-
op in phenotypically intact adults who show no evidence of genome 
instability during development. We propose that the single shared 
consequence of TERT promoter and shelterin mutations is a longer 
telomere and/or a telomere-lengthening capacity (Table 1). Several 
pieces of clinical data support this interpretation. The first is that 
TERT promoter and POT1 mutation carriers have longer telomeres 
than their unaffected relatives (65, 70). The second is that families 
with POT1 and TPP1 mutations often show genetic anticipation, for 
both cancer onset and cancer mortality (13, 59, 60, 65). We have 
proposed before that this pattern of anticipation is likely because of 
successive telomere lengthening (13). In one POT1 mutant family, 
telomere lengthening was observed across generations, although 
the telomere length measurements were not age-corrected and 
were performed by nonstandard methods (65). As discussed in 

Figure 3. Long telomeres promote cancer-related mortality in mice and pro-
posed mechanism for long-telomere melanomagenesis. (A) Survival curve 
summarizing data from mouse models examining the role of telomerase and 
telomere length in cancer-related survival. It shows a survival advantage for 
short-telomere mice in a model of Myc-induced lymphoma, according to Feld-
ser et al. (adapted with permission from Cancer Cell; ref. 91). (B) Schematic 
model for how long-telomere melanoma cells prone to environmentally 
induced DNA damage may have an advantage in cancer progression.
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and lung adenocarcinoma. For the TERT SNP rs2736100, which is 
likely the most commonly recurrent hit in cancer GWAS (83, 85), 
the A short telomere allele, which has a frequency of 0.5, is associ-
ated with IPF risk (77, 86), consistent with the known link between 
short telomeres and IPF risk (41). By contrast, the C allele, which 
is associated with long telomere length, is a recurrent hit in lung 
adenocarcinoma (77, 85, 87). SNPs near RTEL1 and NAF1 (rs755017 
and rs7675998, respectively) follow similar differential effects, with 
the short telomere allele associated with IPF and the long telomere 
allele with lung adenocarcinoma (refs. 86, 87, and Figure 2B).

A recent meta-analysis further illustrates the importance of 
telomere length extremes in disease risk. The study pooled 83 
GWAS and collectively included data from 400,000 cases and 1 
million controls (88). Among these various phenotypes, the dis-
ease that had the strongest association with short telomere SNPs 
was IPF. The additive effect of these common short telomere SNPs 
translated to an odds ratio of 10. This finding also underscores the 
existing literature linking a major subset of IPF risk to short telo-
mere length (14, 15, 41, 89, 90). In contrast, long telomere SNPs 
were associated with cancers that we have considered here and 
elsewhere to be part of the long telomere syndrome spectrum, 
including melanoma and glioma (ref. 88 and Figure 2B).

Limited survival of cancer-prone mice with long 
telomeres
The evidence that long telomere length is cancer-predisposing has 
been well documented in vertebrate animal models. When the 
tumorigenic potential of oncogenes, such as overexpressed Myc 
or KrasG12D, was compared in short- and long-telomere mice, long- 
telomere mice invariably had a worse outcome, developing more 
aggressive tumors and showing decreased survival (refs. 91, 92, and 
Figure 3A). These adverse outcomes were seen in both telomerase–
wild-type and -null long-telomere mice (Figure 3A). Similar patterns 
have also been seen in cancer-prone models in which cancers are 
inducible by loss of a tumor suppressor such as ApcMin or Ink4a (93, 
94). These models contrast with the exception of Tp53+/– mice, which 
developed more tumors on the short telomere background (95). 
Since most humans are germline TP53-intact, and in light of the 
emerging observations that humans with short telomere syndrome 
have a relatively low risk of cancer, we believe the current models 
that are informed primarily on the basis of in vitro data may be over-
estimating the impact of short telomeres as a driver of genome insta-
bility and cancer in humans.

Longer telomeres in melanocytes may promote a 
cancer-prone state
The tight association between melanoma risk and long telomere 
length raises the question of whether there may be some tissue 
specificity in melanocytes. Melanocytes are highly vulnerable to 

ultraviolet-induced genotoxic damage. In this context, short telo-
meres may limit the proliferative potential of mutation-bearing 
melanocytes, while longer telomere length may be permissive 
for increased replicative potential. This in turn would allow the 
acquisition of additional genetic or epigenetic changes that would 
allow melanomagenesis. This model is clinically supported by the 
recent observations showing a high penetrance of cutaneous nevi 
in some POT1 mutation carriers (69). It would also explain the 
absence of any melanoma cases in patients with short telomere 
syndrome phenotypes.

Human genetic studies contextualize laboratory-
based discoveries
Initial paradigms of the role of telomeres in cancer benefitted from 
foundational studies in simple organisms and cell-based models. 
Now, with the advent of new human genetic observations, there is 
an opportunity to integrate new data to refine the current under-
standing of the role of telomeres in cancer. Our synthesis of the 
recent body of work indicates that the risk of cancer susceptibil-
ity associated with long telomeres is greater than that associated 
with genetically determined short telomere length in humans. This 
observation is also supported by a large body of existing animal 
model data. The collective overview thus raises the question as to 
whether current models may be overestimating the role of short 
telomeres as a driver of human carcinogenesis. The opportunity to 
study the role of telomere length in human cancer is a prime exam-
ple of how cancer biology is enriched and challenged by clinical 
observations. One final note regarding the role of long telomere 
length in cancer susceptibility relates to the commercial advertis-
ing of products that claim to lengthen telomeres for purposes of 
reversing or preventing aging. This discourse has limitations and 
does not have a rigorous scientific basis (96). The human genetic 
observations we reviewed here support the idea that excessively 
long telomeres do not equate with youth but rather with a capacity 
for cancer cells to grow unchecked with fewer brakes.
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