bstract. The effects of neutrophil elastase on
endothelial prostacyclin (PGI,) production, nucleotide
release, and responsiveness to vasoactive agents were
compared with the effects of cathepsin G (the other
major neutral protease of neutrophils), pancreatic elas-
tase, trypsin, chymotrypsin, and thrombin. PGI, pro-
duction by pig aortic endothelial cells cultured on mi-
crocarrier beads and perfused in columns was stimulated
in a dose-dependent manner by trypsin, chymotrypsin,
and cathepsin G (1-100 ug/ml for 3 min). Thrombin,
while active at low concentrations (0.1-10 National
Institutes of Health U/ml), induced smaller responses.
Neutrophil and pancreatic elastase had little or no effect
on PGI; production. Dose-dependent, selective release
of adenine nucleotides was induced by neutrophil elastase
(3-30 ug/ml). The other proteases were much less active;
for example, trypsin (100 ug/ml) induced a response
only ~5% as great as did 30 ug/ml neutrophil elastase.
After exposure to 30 ug/ml neutrophil elastase, cells did
not exhibit the characteristic burst of PGI, production
in response to extracellular ATP; responsiveness gradually
returned after 40-120 min. This effect was not seen
with the other proteases. Elastase partly inhibited re-
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sponses to bradykinin and had no effect on PGI, pro-
duction that was stimulated by ionophore A23187.
There was no evidence of cytotoxicity, as measured by
release of lactate dehydrogenase. Neutrophil degranula-
tion can generate concentrations of elastase and cathepsin
G comparable with those tested in the present study,
and the effects of these enzymes on endothelial function
lead us to suggest that they may play a role in vaso-
regulation and vascular pathology.

Introduction

It is now widely recognized that the endothelium is not merely
a passive vascular lining but plays an active role in physiological
processes such as hemostasis, vasoregulation, and inflammation
(1). Endothelial cells contribute to hemostasis by secreting
prostacyclin (PGL)' (2, 3), a powerful inhibitor of platelet
function, which is also a vasodilator, and to vasoregulation
through prostacyclin and through the phenomenon of endo-
thelium-dependent vasodilation (4), which is induced by several
agents including ATP, bradykinin, and thrombin (5, 6) and
involves mediator(s) other than PGI, (7). Endothelial contri-
butions to inflammation include the regulation of leukocyte
traffic (neutrophils have a particular affinity for endothelium)
and the control of vascular permeability, which is mediated
by agents acting either directly on endothelial cells or indirectly,
by activating neutrophils, which then secrete constituents (as
yet unidentified) that affect the endothelium (8).

The capacity of activated neutrophils to damage endothelial
cells has been noted both in vitro and in vivo, and neutrophil
proteases have been implicated in this endothelial cytotoxicity
(9-11). The endothelial damage recorded in these studies
resulted in cell death, whereas neutrophil-dependent increases

1. Abbreviations used in this paper: DMEM, Dulbecco’s modified
Eagle’s medium; LDH, lactate dehydrogenase; PGE, and PGF,,,
prostaglandins E; and F,,, respectively; PGI,, prostacyclin, prosta-
glandin I,.
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in vascular permeability involve more subtle (and, presumably,
reversible) effects; as potentially lethal stimuli can, at lower
concentrations, exert transient, nonlethal effects on endothelial
functions (12), it seemed possible that neutrophil proteases
might, under some conditions, reversibly affect endothelial
functions involved in vasoregulation. Other proteases are known
to exert such effects: Thrombin induces endothelium-dependent
vasodilation (13), and both thrombin and trypsin stimulate
prostacyclin production (14) and the selective release of nu-
cleotides from endothelium (15, 16). Therefore, we set out to
determine whether the major neutral proteases of human
neutrophils (elastase and cathepsin G) affected PGI, production
and/or nucleotide release from endothelial cells, and whether
endothelial responses to stimuli such as ATP, bradykinin, and
ionophore A23187 were altered after exposure to these enzymes.
Possible cytotoxicity was assessed morphologically and bio-
chemically, and the effects of the neutrophil enzymes were
compared with those of other neutral proteases. Our results
showed a distinctive spectrum of effects of neutrophil elastase
on endothelial cell function, different from that of other
proteases studied. These effects have implications for the in
vivo modulation of inflammation and vasoregulation.

Methods

Materials. Hepes (N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic
acid), trypsin (EC 3.4.21.4 bovine pancreatic, 10,000-13,000 N-a-
benzoyl-L-arginine ethyl ester U/mg protein), thrombin (human plasma,
3,000 National Institutes of Health (NIH) U/mg protein), a-chymo-
trypsin (EC 3.4.21.1, type I-S from bovine pancreas), bradykinin
triacetate, ATP (disodium salt from equine muscle), N-a-benzoyl-DL-
arginine p-nitroanilide HCl, pyruvate, and a-nicotinamide adenine
dinucleotide (NADH) were all purchased from Sigma Chemical Co.,
Poole, United Kingdom. Trypsin (1:250) was also obtained from Difco
Laboratories, Detroit, MI. Calcium ionophore A23187, from Cal-
biochem-Behring, Cambridge, United Kingdom was stored at —20°C
in dimethyl sulfoxide (stock concentration was 1072 M).

Neutrophil elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20)
were prepared by Drs. J. Saklatvala and A. J. Barrett from human
leukocytes obtained by leukophoresis from a patient with chronic
myelogenous leukemia (17). Pancreatic elastase was prepared from pig
pancreas by Dr. James Travis, University of Georgia, Athens. A specific
inhibitor of neutrophil elastase of the chloromethylketone class, CH;O-
Suc-Ala-Ala-Pro-Val-CH,Cl, was provided by Dr. James C. Powers,
Georgia Institute of Technology, Atlanta (18). Furoyl saccharin, a
structurally unrelated inhibitor of elastase (19), was provided by Dr.
Morris Zimmerman, Merck Institute, Rahway, NJ.

Endothelial cell columns were perfused either with Dulbecco’s
modified Eagle’s medium (DMEM) to which 20 mM Hepes had been
added to maintain the pH at 7.4 or with Krebs’ solution of the
following composition (in millimolar): NaCl, 119; KCI, 3.1; MgSO,,
0.6; NaHCO;, 25; KH,PO,, 1; CaCl,, 1.3; and glucose, 11.1; pH was
maintained at 7.4 by gassing the solution with 95% O,:5% CO,.

Agonists were diluted, at least 100-fold, in the appropriate perfusion
medium immediately before use. Unless otherwise stated, cells were
exposed to ATP and bradykinin for 2 min, to neutral proteases for 3
min, and to A23187 for 5 min.
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Endothelial cell culture. Endothelial cells were isolated from porcine
thoracic aorta, essentially as previously described (20), plated in 25-
cm? tissue culture flasks, and grown to confluence at 37°C in a
humidified atmosphere of 5% CO, in air. Cells were subcultured using
0.1% trypsin (Difco Laboratories, 1:250)/0.25% EDTA, seeded onto
2.0-ml microcarrier beads (5 X 10° beads; Biosilon, A/S Nunc, Roskilde,
Denmark) in 70 ml of growth medium, and stirred intermittently (21)
until >50% of bead surface was covered (~5-10 X 10° cells; up to 10
d). To visualize endothelial cells, an aliquot of beads was fixed in
ethanol and stained with 0.1% methyl violet in water.

Some experiments measuring *H-purine release were performed
with cells grown for 6-12 passages (1:2 split when confluent) before
seeding onto microcarrier beads. Experiments measuring PGI, produc-
tion were performed only with cells in first passage, since PGI,
production has previously been shown to decline during multiple
subpassages (21). No differences in purine release were noted in
subcultured cells.

Endothelial cell columns. 0.4-0.5 ml of microcarrier beads covered
with endothelial cells (1-2 X 10° cells) was packed into a 1-ml plastic
syringe plugged with glass wool; the syringe was closed with a rubber-
tipped plunger through which plastic tubing had been threaded, as
previously described (7, 21). Columns were continuously perfused
from below with either Hepes-buffered DMEM or Krebs’ solution at
0.35 ml/min in a 37°C chamber, and fractions were collected at 1-
min intervals. All columns were preperfused for at least 60 min
without agitation before starting experiments. Pump tubing fluid
volume was <0.3 ml.

Release of prostaglandins. Samples of column fractions (5-20 ul)
were assayed directly for the stable product of PGI, (6-0xo-prostaglan-
din F,, [PGF,.}) and for prostaglandin E, (PGE,) by radioimmuno-
assay (22).

Release of *H-purines. To determine purine release, cells were
prelabeled with [*H]adenosine for 60 min as follows: columns were
washed for 5-10 min with serum-free DMEM, and then 5 uCi/ml [2-
3H]adenosine (22 Ci/mmole, Amersham International, Amersham,
United Kingdom) in the same medium was recirculated at 0.35 ml/
min through the column for 60 min at 37°C from a 5-ml reservoir,
using a closed circuit system. Approximately 55% of the label was
taken up by the cells after 60 min, and >90% of this intracellular label
is in the form of adenine nucleotides (mainly ATP) (20). The closed
circuit was then disconnected and the column was perfused for 15 min
with medium or buffer to remove unincorporated radioactivity. Fractions
were then collected every minute onto trichloracetic acid (TCA) (final
concentration, 5%) and 50-ul aliquots were counted to determine total
3H-purine release. At the end of the experiment, cell-associated radio-
activity on the column was measured after solubilizing cells in 0.5 ml
0.2% Triton X-100. The profile of *H-purines released was determined
by thin-layer chromatography of 40-ul aliquots after neutralizing the
samples with 5 M K,CO; (20). Columns (1-2 X 10° cells) usually
contained 3-10 X 10° cpm and released ~0.15% min~! of this total
when perfused with DMEM alone.

Endothelial cell cytotoxicity. The effects of proteases on cell mor-
phology, vital dye exclusion, and release of lactate dehydrogenase were
determined to detect possible cytotoxicity. Endothelial cells were plated
at confluent densities (~10° cells/well) in 16-mm diameter wells of
tissue culture plates and used within 2 d. Cells were rinsed once with
phosphate-buffered saline (PBS) to remove serum and incubated with
proteases for up to 15 min in Krebs’ solution at 37°C. Cell morphology
and the percentage of cells excluding trypan blue (0.1% in PBS) were
assessed visually.



The release of lactate dehydrogenase (LDH) from cells in static
culture and from columns was assayed according to standard techniques
(23) as follows: cells were solubilized in 0.2% Triton X-100 or column
fractions were made up to 1.0 ml in 0.2% Triton X-100. 40 ul each of
pyruvate and NADH, both at 2.5 mg/ml in PBS, were added and the
reaction was followed at room temperature in a double-beam spectro-
photometer. The reference cuvette lacked only NADH.

Protease assays. Two assays of protease activity were used, one for
trypsinlike activity and another specific for neutrophil elastase activity.
The trypsinlike protease assay was a modification of method II of
Erlanger et al. (24); it measured the yellow product, p-nitroanilide
(E410 nm) cleaved from the synthetic substrate benzoyl-D-L-arginine p-
nitroanilide HC1 by trypsin and related serine proteases. 5 M sodium
formate, pH 3.0, was used to stop the reaction. The neutrophil elastase
assay measured the fluorescent product, 7-amino-4-methylcoumarin
(NMec), which is cleaved from the synthetic substrate CH;O-Suc-Ala-
Ala-Pro-Val-NMec (provided by Dr. A. J. Barrett). Trypsin, chymo-
trypsin, and cathepsin G do not cleave this substrate under the
conditions of the assay (25).

Protease assays were used routinely to standardize enzyme activity
in all preparations used, to monitor the recovery of enzymes in the
column effluent, and to check the effects of inhibitors.

Analysis of results. To compare results obtained in different columns,
responses were expressed as multiples of the base line value, defined
as the ratio of peak response to the mean of five values immediately
before exposure to the stimulus. To compare the effects of repeated
stimuli on the same column, each net response (peak minus base line)
was expressed as a percentage of the net response to the initial stimulus.

Results

Effects of proteases on endothelial cell functions
Stimulation of prostacyclin production. Trypsin, chymotrypsin,
and cathepsin G were all potent stimulators of PGI, production,
each with a threshold active concentration <1.0 ug/ml. Fig. 1
shows the dose-response in one experiment with trypsin (1-
100 ug/ml). Stimulated PGI, production values (mean+SEM)
for 1, 10, and 100 ug/ml were 3.210.6-fold (n = 6), 12.8+2.5-
fold (n = 5), and 16.214.5-fold (n = 5), respectively, over base-
line value. Stimulation of PGI, production was immediate in
onset, reached a peak ~ 2 min after addition of the stimulus,
and returned towards base line while the stimulus was still
present. Patterns of responses to chymotrypsin and cathepsin
G were similar to that seen with trypsin: For example, mean
responses obtained were 7.4-fold stimulation with 10 ug/ml
chymotrypsin and 30-fold stimulation with 100 ug/ml of
cathepsin G.

Of the other proteases tested, thrombin and pancreatic
elastase stimulated PGI, production with a threshold active
concentration of 3-10 ug/ml, but maximal stimulation was
only 2.8-fold with thrombin (10 NIH U/ml) and 4.6-fold with
pancreatic elastase (100 ug/ml). Neutrophil elastase was also a
weak stimulator of PGI, production, with a threshold active
concentration of 10-30 ug/ml and little effect even at 100 ug/
ml (Fig. 1).

Stimulation of H-purine release. Basal release of purines
was 0.15+0.02% min~' of the labeled nucleotide pool
(mean+SEM, n = 13, range 0.05-0.29%). Of the proteases
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Figure 1. Prostacyclin production by endothelial cells on microcarrier
bead columns in response to trypsin or to neutrophil elastase. Preper-
fusion was for 60 min at 0.35 ml/min before collecting fractions
every minute. Column volume was 0.4 ml, estimated to contain 1-2
X 10° cells. Enzymes were dissolved in DMEM, brought to 37°C
immediately before testing, and perfused for 3 min; in this and in all
subsequent Figures, the duration of infusion of each stimulus is
indicated by the length of the horizontal bars. Prostacyclin was
assayed in 20-ul aliquots of eluate as 6-oxo0-PGF,, (see Methods).

studied, neutrophil elastase was the most potent stimulus of
3H-purine release. The lowest effective concentration was ~3
pg/ml, and mean responses for 3, 10, and 30 ug/ml were
2.9+0.2-fold (n = 3), 9.8+2.0-fold (n = 5), and 92.4+7.1-fold,
respectively, (n = 3) over base-line values. Fig. 2 shows the
effect of 1-30 ug/ml of neutrophil elastase on 3H-purine release
in a representative experiment. The response was immediate
in onset, peaks occurred ~4min after addition of the stimulus
and, in contrast to PGI, production, returned toward base line
only after removal of the stimulus. Trypsin and pancreatic
elastase induced maximal responses of only 3.5+0.5-fold (n
= 3) and 1.7-fold over base line, respectively, at 100 ug/ml
(Fig. 2), and thrombin, chymotrypsin, and cathepsin G were
also much less effective than neutrophil elastase (e.g., thrombin,
at 10 NIH U/ml, stimulated release by 2.4+0.2-fold; n = 3).
Thin-layer chromatography of the released *H-purines
showed that neutrophil elastase selectively stimulated the release
of nucleotides (ATP, ADP, AMP) rather than nucleosides
(inosine, hypoxanthine, adenosine). Basal release of *H-nucleo-
tides from unstimulated cell columns was <0.05% per min;
this rose to a maximum of 0.9% per min after 100 ug/ml
trypsin and 6.4% per min after 30 ug/ml elastase. These values
were obtained by chromatography of samples using a solvent
system (26) that resolves individual nucleosides but not nu-
cleotides. Nucleoside release in these stimulated responses was
small (<25% of all *H-purines) and comprised mainly adeno-
sine, with very little inosine and hypoxanthine; in contrast,
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Figure 2. Release of *H-purines from endothelial cells on microcar-
rier bead columns in response to neutrophil elastase, trypsin or
pancreatic elastase. Cells and columns were as described in Methods
and in Fig. 1 legend. Endothelial cell purines were prelabeled by
incubating the cells with [*H]adenosine for 60 min (see Methods).
Results are expressed as multiples of base-line *H-release (see Meth-
ods). Fractions were collected every minute. Effluent (0.35 ml/min)
was collected into 60 ul of 50% TCA to inhibit nucleotide break-
down.

the small amount of purine release in unstimulated samples
comprised up to 85% nucleosides. Chromatography under
conditions that resolve nucleotides (20) revealed that substantial
amounts of ADP and AMP were present in addition to ATP;
the proportion varied in different samples. As ATP is by far
the most abundant nucleotide within endothelial cells (20),
the presence of the AMP and ADP suggests that released ATP
may be metabolized by endothelial ectonucleotidases, as found
in previous studies (15).

Endothelial cell cytotoxicity. Incubation with 30 ug/ml
neutrophil elastase for 5 min at 37°C had no effect on cell
morphology, or on trypan blue exclusion (~99% in control
and treated cultures). Some uptake of trypan blue was noted
after 15 min incubation with 30 ug/ml neutrophil elastase
(though not with 3 or 10 ug/ml), as well as detachment of
some cells from the culture vessel.

Basal release of LDH from columns was 0.78+1.16%/min
(n = 11) of total column activity and varied up to 2.5-fold
during individual experiments. There was no increase in LDH
release during a 3-min infusion of neutrophil elastase at
concentrations up to 30 ug/ml (mean, 0.67% min), nor over
the 20-min period after the elastase infusions. This indicates
that under these conditions elastase neither induced leakage of
LDH nor detached cells from the beads. Infusion of 100 uM
ATP, either before or after elastase, had no effect on LDH
release (0.36%/min), and the other proteases tested were also
without effect on LDH release.

Effects of proteases on endothelial cell

responses to vasoactive agents

ATP-induced PGI, production. ATP (100 uM) stimulated PGI,
production by 18.2+3.2-fold over basal production (n = 11).
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When cells were challenged a second time with ATP (100 uM)
20-40 min after the first challenge, the stimulation of PGI,
production was similar to the initial response (96.0+1.7%, n
= 5). Since the proteases tested had variable effects on PGI,
production and on purine release, the effects of exposure to
these proteases on subsequent PGI, responses to ATP were
studied. As shown in Fig. 3, neutrophil elastase (30 ug/ml),
itself a weak stimulator of PGI, production but a potent
stimulator of *H-purine release, completely eliminated the
PGI; response to a second challenge with ATP; the second
response was 1.3+0.3% of the initial response to ATP (n = 5).
In contrast, PGI, responses to a second challenge with ATP
after exposure to pancreatic elastase, thrombin, and chymo-
trypsin (all at 30 ug/ml) averaged 95% of initial ATP responses
(n = 3); these three proteases behaved similarly in not affecting
PGI, responses to a second challenge with ATP, despite
substantial differences in their potency as direct stimulators of
PGI, production (Fig. 3). Trypsin, another potent stimulus to
PGI, production, also had no effect on subsequent responses
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Figure 3. Prostacyclin production by endothelial cells on microcarrier
beads in response to ATP before and after exposure to neutrophil
elastase, pancreatic elastase, thrombin, or chymotrypsin. Enzymes
(30 pg/ml), cell columns, and aliquots for assay were prepared as
described in Fig. 2 legend.



to ATP. The minimum concentration of neutrophil elastase
required to inhibit responses to ATP was ~10 ug/ml, and
prolonged (15 min) exposure to a subthreshold concentration
of elastase (1 ug/ml) did not affect subsequent responses to
ATP (Fig. 4). ATP also stimulates the production of PGE; by
endothelial cells (27), and in some samples the effect of elastase
on ATP-induced PGE; production was determined; PGE, was
inhibited in parallel with PGI,. In separate experiments, we
found that the ability of ATP to release [*H]arachidonate from
prelabeled endothelial cells (22) was also inhibited after exposure
to elastase.

The duration of the inhibition of ATP-stimulated prosta-
glandin production by neutrophil elastase was studied by
repeated additions of 100 uM ATP at varying intervals after
exposure to elastase (30 ug/ml). PGI, production in response
to ATP was abolished 20-30 min after elastase but increased
progressively from ~40 min onwards, returning to normal
after ~2 h.

Effects of neutrophil elastase on stimulation of PGI,
production by bradykinin and ionophore A23187

To determine whether neutrophil elastase inhibited PGI, pro-
duction induced by agents other than ATP, responses to
bradykinin and ionophore A23187 were studied. The PGI,
response to 3 X 10~ M bradykinin was reduced by ~90%,
20 min after exposure to elastase (30 ug/ml). Desensitization
was seen with repeated exposure to bradykinin alone (second
responses were about half of initial responses), which made
elastase effects difficult to quantify, but in all experiments
responses after elastase, when compared with responses to
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Figure 4. Prostacyclin production by endothelial cells on microcarrier
bead columns stimulated by ATP (100 uM) before and after varying
concentrations (1, 3, 10, 30 ug/ml) of neutrophil elastase for 3 or 15
min as indicated. Details are outlined in Fig. 1 legend.
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bradykinin alone, were consistently reduced although not
abolished. :

The calcium ionophore A23187 was a potent stimulus of
PGI, production but endothelial cells do not respond to
successive challenges. Therefore, to test the effects of granulocyte
elastase on responses to A23187, two cell columns prepared
from the same microcarrier culture, only one of which was
exposed to neutrophil elastase, were both exposed to A23187
at identical times from the onset of perfusion. Cells not
exposed to elastase showed a 96.4+19.6-fold increase in PGI,
production to A23187 (10 uM, 5 min); columns exposed to
elastase (30 pg/ml, 3 min exposure 40 min before A23187)
showed a 91.2+13.3-fold increase over basal PGI, production
(n = 4). Thus, endothelial PGI; production in response to
A23187 is unaffected by prior exposure to neutrophil elastase.

Effects of neutrophil elastase afier enzyme inhibition

To determine the role of the catalytic site in the effects of
neutrophil elastase on endothelial cells, concentrations of
elastase known to abolish subsequent PGI;, responses to ATP
were incubated for 1 h with fivefold molar excess concentrations
of the specific chloromethylketone inhibitor of neutrophil
elastase, CH;O-Suc-Ala-Ala-Pro-Val-CH,Cl (12). This abolished
elastase activity against a specific substrate (see Methods). As
shown in Fig. 5, neutrophil elastase (30 ug/ml) previously
incubated with inhibitor had virtually the same effect on PGI,
responses to ATP as the enzyme alone; similar results were
obtained with furoyl saccharin, a structurally urirelated elastase
inhibitor (19). Furthermore, neutrophil elastase-inhibitor mix-
tures were as powerful stimuli of 3H-puririe release as were
comparable concentrations of neutrophil elastase alone. The
inhibitor alone had no effect on 3H-purine release or on
responses to ATP. Heat treatment of the elastase preparation
(100°C for 5 min) did not block its effect on endothelial cells,
but preincubation with serum inhibited its effect.

The resistance of this elastase effect to enzyme inactivation
contrasts with stimulation of endothelial PGI, production by
trypsin (which we found was abolished by heat inactivation or
soybean trypsin inhibitor) or by thrombin (which is abolished
by treatment with diisopropylfiuorophosphonate; see refer-
ence 16).

Discussion

The results of our present study demonstrate that neutrophil
elastase, although a weak stimulator of PGI, production com-
pared with some other neutral proteases, inhibited PGI, pro-
duction in response to other stimuli, especially ATP. Further-
more, in contrast to the other neutral proteases studied,
neutrophil elastase was a powerful stimulator of adenine
nucleotide release. Responses to neutrophil elastase were im-
mediate, of brief duration, and were not associated with
endothelial cell injury as measured by LDH release. Accurate
evaluation of such effects can be made only with the perfused
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bead-column technique, which enhances stimulator effects and
permits kinetic analysis of individual responses to repeated
stimuli and of the interactions between different stimuli without
medium change or mechanical intervention.

Stimulation of endothelial PGI, production by thrombin,
trypsin, and chymotrypsin (14) was confirmed, and the kinetics
of responses explored. Cathepsin G, another powerful stimulant,
has not been tested previously. This enzyme is one of the two
most abundant neutral proteases in human neutrophils (the
other being elastase) and is also released when neutrophils
degranulate. The concentrations of 6-0x0-PGF,, measured in
column eluates after stimulation with cathepsin G indicate
that similar responses in vivo would have profound biological
effects: peak concentrations were 5-30 ng/ml, and PGI, at
concentrations around 0.1 ng/ml inhibits platelet aggrega-
tion (2).

Neutrophil elastase (3-30 ug/ml) stimulated purine release,
whereas other proteases tested at comparable concentrations
had little or no effect. Previous reports of trypsin-induced
nucleotide release used 1 mg/ml, the concentration routinely
used to subculture cells (15); the present study showed that
trypsin (100 ug/ml) stimulated nucleotide release (as distinct
from total *H-purine release) by sixfold. This can be compared
with >200-fold stimulation of nucleotide release by 30 ug/ml
neutrophil elastase.

Neutrophil elastase also inhibited ATP-stimulated endo-
thelial cell PGI, production; the mechanisms responsible are
not yet known, but the possibilities are: (a) nonspecific cytotoxic
effects; (b) receptor desensitization through release of ATP; (¢)
a direct effect of elastase on the receptor for ATP, either by
proteolysis or via nonenzymic binding to the receptor. Relevant
arguments include: (a) elastase did not have conventional
cytotoxic effects under the conditions of our experiments, and
did not disrupt the prostaglandin synthetic machinery (stimu-
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lation of PGI, production by ionophore A23187 was unaf-
fected); (b) stimulation of PGI, production by repeated additions
of ATP (100 uM) showed no desensitization; (c) inhibition of
the catalytic site with a specific inhibitor did not block the
effects of neutrophil elastase on endothelial cells. Thus, neu-
trophil elastase probably exerts its effects on endothelial cells
by nonenzymic binding to the cell surface, as has been
described for mononuclear cells (28). The concept that proteins
can have multiple domains with biological activity is not
unique to elastase: Several such examples are known, and
some of these activities (like the ability of elastase to release
purines from endothelial cells) are resistant to heat treatment;
for example, the routine procedure for purification of platelet-
derived growth factor involves boiling the preparation, and
heating granulocyte cationic proteins increases their bactericidal
and cytotoxic activity while destroying their proteolytic activity
(29, 30).

The question remains as to which domain(s) on the elastase
molecule might be involved in functional interactions with the
endothelial surface. Recent studies in our laboratory (Needham,
L. A,, and J. L. Gordon, unpublished results) have shown that
cationic (but not uncharged) polymers such as polylysine,
polyarginine, and polyornithine induce *H-purine release from
endothelial cells, and that their effectiveness increases with
molecular size. This suggests that the elastase domain respon-
sible for stimulating endothelial cells contains an assembly of
basic amino acids. The possibility that the effects observed
with elastase were caused by some contaminant introduced
during preparation of the enzyme seems unlikely, because
three different enzyme preparations were tested, in addition to
two unpurified preparations of neutrophil granule extracts,
which also stimulated purine release.

There is evidence that the effects of neutrophil granule
proteins on endothelial cells are important in the inflammatory



process: Endothelial damage by activated neutrophils in vitro
has been attributed to the release of proteases (11), and
endothelial injury in vivo has been observed after neutrophil
activation and degranulation but not after granulocyte-endo-
thelial cell contact alone (9, 10). It should be noted that
although previous studies in vitro (like our own experiments)
used endothelial cells cultured from large vessels, most neutro-
phil-endothelial interactions in vivo take place in the micro-
circulation; whether endothelial cells from these different vas-
cular sites respond similarly to neutrophil products remains to
be determined. Previous studies of neutrophil-endothelial in-
teractions in vitro usually determined cell death as the end
point of injury, whereas the present study deals mainly with
more subtle and reversible effects of neutrophil elastase on
endothelial functions; however, we also noted that increasing
the concentrations and/or exposure time resulted in cytotoxic
effects, consistent with the concept that a potentially damaging
stimulus can reversibly affect cell functions at lower concen-
trations than those that are cytotoxic (12). The concentrations
of neutrophil elastase to which endothelial cells might be
exposed in vivo are difficult to predict accurately but, on the
basis of the extent of neutrophil-endothelial interaction that
has been observed (8, 10, 31) and the content of elastase in
human neutrophils (32), we can calculate that degranulation
of neutrophils in the microcirculation could produce local
concentrations of elastase in the range of 10-100 ug/ml, with
concentrations in the microenvironment at the endothelial
surface transiently even higher. The effects of this released
elastase on endothelium would depend largely on the efficiency
with which plasma inhibitors acted: We found that incubation
with serum or plasma blocked the effects of elastase on
endothelial cells but it is known that where there is intimate
cell-substrate contact (as occurs in neutrophil-endothelial
adhesion; see references 8, 10, 31) plasma inhibitors are, at
least temporarily, ineffective (33).

The reversible effects of neutrophil elastase on endothelial
cells may be important in the context of vasoregulation,
because ATP is a potent vasoactive agent (34) that stimulates
the release of vasodilator prostaglandins (including PGI,) from
vascular beds (35-36) and from endothelial cells in culture
(reference 27 and Fig. 3), and also induces endothelium-
dependent vasodilation (5, 6) in some blood vessels (13) by an
unknown mechanism not involving prostaglandins (5, 7).
Thus, the ability of neutrophil elastase to release nucleotides
from endothelial cells could be expected to result in vasodilation,
were it not for the fact that elastase temporarily blocks ATP-
induced PGI, production. Whether elastase also blocks ATP-
induced endothelium-dependent relaxation has not yet been
established, and therefore it is not clear at present if exposure
of endothelium to elastase in vivo would compromise all ATP-
induced vasodilation, or only in those vessels where the effect
of PGI, predominated. This topic merits investigation, because
loss of endothelium-dependent vasodilation results in exagger-
ated vasoconstrictor responses (37), which might contribute to

the paradoxical vasospasm seen in some conditions of peripheral
vascular disease, such as those associated with Raynaud’s
phenomenon (38).
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