The Urinary Concentrating Defect in the Gunn Strain of Rat

ROLE OF BILIRUBIN

N. BRANSON CALL and C. CRAIG TISHER

From the Division of Nephrology, Department of Medicine and the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710

ABSTRACT The role of high serum and tissue levels of unconjugated bilirubin in the pathogenesis of the impaired urinary concentrating ability was investigated in homozygous (jj) Gunn rats with the congenital absence of hepatic glucuronyl transferase. Continuous phototherapy with blue fluorescent lights at a wave length of 460 nm or oral cholestyramine feeding or both reduced serum levels of unconjugated bilirubin to levels consistently below 3.0 mg/100 ml for several weeks in both weanling and adult *jj* Gunn rats. The renal concentrating defect was already present in weanling *ij* Gunn rats by 21 days of age. In treated weanling *jj* animals, maximum concentrating ability and the concentration of urea and nonurea solutes in the papilla and medulla, determined after 24 h of fluid deprivation, were normal when compared to unaffected heterozygous (J_i) littermates. Solute-free water reabsorption which is reduced in jaundiced *jj* Gunn rats was restored to normal in treated weanling *jj* rats. The tissue concentration of unconjugated bilirubin was reduced throughout the papilla and inner and outer medulla in the treated *jj* rats in comparison with untreated *ij* littermates. The defect in urinary concentrating ability was only partially reversible and sometimes irreversible in adult *jj* rats, probably because of permanent renal parenchymal damage occurring secondary to massive crystalline deposits in the papilla and medulla. It is concluded that unconjugated bilirubin is directly involved in the pathogenesis of the concentrating defect in jaundiced *jj* Gunn rats.

INTRODUCTION

The chronically-jaundiced homozygous Gunn rat (*ji*), a mutant of the normal Wistar strain, has a persistent unconjugated hyperbilirubinemia secondary to the congenital absence of the hepatic enzyme glucuronyl transferase (1-4). Urine concentration at both high and low rates of osmolar clearance has been found to be impaired in these animals (5, 6). A causal relationship between the hyperbilirubinemia and the renal defect has been postulated and several observations indirectly support such a relationship. In those animals with impaired urine concentrating ability, tissue concentrations of bilirubin are markedly elevated throughout the kidney, especially in the papilla (4-7). In the adult *ii* animals, massive crystalline deposits of bilirubin are found in the renal papilla and are often associated with papillary necrosis (8). Concentrations of urea and nonurea solutes are greatly reduced in the medulla of adult *jj* rats when compared to normal controls (5). Both free water clearance (CH20)¹ and solutefree water reabsorption (T°H20) are reduced in adult jj animals when compared to normal controls (5, 6). This indirect evidence has been used to support the hypothesis that unconjugated bilirubin damages the transport capacity of the ascending limb of Henle, thereby altering the countercurrent system, thus leading to the observed defect in urine concentration (5, 6).

Dr. Tisher is the recipient of Research Career Development Award HL 440074 from the U. S. Public Health Service.

Dr. Call's present address is: University of Utah Medical Center, University of Utah, Salt Lake City, Utah.

Received for publication 17 July 1974 and in revised form 2 October 1974.

¹Abbreviations used in this paper: C_{H_2O} , free water clearance; C_{osm} , osmolar clearance; $T^c_{H_2O}$, solute-free water reabsorption; U_{max} , maximum urine concentrating ability.

The purpose of the present study was to critically examine the role of unconjugated bilirubin in the pathogenesis of the urine concentrating defect in the homozygous jj Gunn rat. Serum levels of unconjugated bilirubin were lowered to near normal levels in both weanling and adult animals for prolonged periods of time through the combined use of phototherapy (9-11) and oral cholestyramine administration (12). In the treated *jj* rats, maximum urine concentrating ability and the concentration of urea and nonurea solutes in the medulla, determined after 24 h of fluid deprivation, were normal. T^cH₂O was restored to normal and the concentration of bilirubin was markedly reduced throughout the renal medulla. Thus, according to all measured parameters, the defect in urine concentrating ability was completely reversed with reduction in serum and tissue levels of bilirubin, directly implicating unconjugated bilirubin as the nephrotoxic agent in this experimental animal model.

METHODS

Offspring of jj male and heterozygous (Jj) female Gunn rats obtained from our own breeding colony were employed in all experiments. The animals ranged in age from 21 days to 8 mo. Except where otherwise indicated, the animals were allowed free access to standard rat chow (Ralston Purina Co., St. Louis, Mo.) and tap water. Animals treated with phototherapy were shaved and placed in special cages equipped with overhead blue fluorescent lights (F20T12/ BB, Westinghouse Electric Corp., Fairmont, W. Va.) with an illumination of 1,000 $\mu W/cm^2$ at a wavelength of 460 nm. The animals were illuminated continuously day and night throughout the period of experimentation. Oral cholestyramine (Questran, Meade Johnson Laboratories, Evansville, Ind.) was fed to certain animals to lower the serum bilirubin concentration. The animals received standard rat chow ground to a fine powder to which cholestyramine was added in a concentration of 5% by weight. Other animals received both modalities of therapy simultaneously. Base-line measurements of serum bilirubin² and maximum urine concentrating ability (Umax), the latter determined after 24 h of fluid deprivation, were obtained in all animals upon their entry into the study. In most animals, repeat determinations of serum bilirubin and Umax were obtained weekly throughout the duration of the study, unless otherwise indicated.

Effect of phototherapy on urine concentrating ability in weanling jj Gunn rats. The ability of phototherapy to reverse the unconjugated hyperbilirubinemia and prevent the defect in urine concentration was studied in male and female weanling jj Gunn rats. All of the offspring from five pairings of jj Gunn males and Jj Gunn females were weaned at 21 days and base-line U_{max} and serum bilirubin concentrations were determined. The jj animals from each litter were randomly divided into two groups; one group (n=9) was subjected to continuous phototherapy while the second group (n=14) served as untreated jj control animals. Ten Jj littermates which have normal serum bilirubin concentrations and do not exhibit hyposthenuria were maintained as normal Jj control animals. Weekly measurements of serum bilirubin and U_{max} were obtained in the two groups of jj rats and U_{max} only in the Jj animals for a period of 20 wk.

Effect of cholestyramine on urine concentrating ability in weanling jj Gunn rats. The ability of oral cholestyramine to reverse the unconjugated hyperbilirubinemia and the urine concentrating defect was next evaluated in four weanling jj Gunn rats. Base-line determinations of serum bilirubin and U_{max} were obtained and the animals were then allowed free access to standard rat chow containing 5% cholestyramine by weight. Measurements of serum bilirubin and U_{max} were obtained weekly for a period of 20 wk.

Effect of phototherapy and cholestyramine on urine concentrating ability in weanling jj Gunn rats. The effectiveness and feasibility of combined therapy was studied in 23 weanling jj Gunn rats subjected to both phototherapy and oral cholestyramine feeding for a period of 20 wk. 22 jj Gunn rats served as untreated controls and 23 Jj rats as normal controls. The usual pretreatment and periodic measurements of serum bilirubin and U_{max} were determined in the three groups of animals.

Effect of phototherapy and cholestyramine on urine concentrating ability in adult jj Gunn rats. To determine the reversibility of the urine concentrating defect in adult jjGunn rats, six chronically jaundiced jj female rats were chosen at random from the colony and subjected to 20 wk of continuous phototherapy and oral cholestyramine feeding. Weekly measurements of serum bilirubin concentration and U_{max} were obtained for comparison with similar pretreatment values. The animals were sacrificed at the conclusion of the period of observation by stunning and the kidneys were examined grossly.

Measurement of tissue solute and bilirubin concentration. To determine the completeness of the correction of the urine concentrating defect in the weanling jj Gunn rat, urea and nonurea solute concentrations were determined in the kidneys of 11 weanling jj Gunn rats treated with either phototherapy alone or both phototherapy and oral cholestyramine. Ten weanling jj Gunn littermates served as untreated controls and eight Jj littermates served as normal controls. Weekly measurements of serum bilirubin and Umax were obtained in the two groups of jj Gunn rats and U_{max} only in the Jj animals. After 24 h of fluid deprivation and the attainment of a urine sample, each animal was sacrificed by stunning. The left kidney was quickly excised and samples of tissue were immediately removed from the papilla, inner medulla, outer medulla, and cortex and placed in thin preweighed polyethylene dishes which were precooled to -80° C on dry ice. Sample size was determined by tare weight. The frozen tissue was then transferred into a small known volume of cold deionized distilled water and homogenized in preparation for measurement of sodium, potassium, urea, and NH3 content. Small samples of tissue were also removed from the same regions of the kidney in some animals for the determination of tissue water content. The samples were dried at 110°F for 1 wk and weighed by tare to constant weight.

Tissue bilirubin content was determined on the contra-

^a Initially, total and direct reacting serum bilirubin concentrations were determined in the jj rats. The difference between the two measurements represents the fraction of unconjugated bilirubin present in the serum. However, since direct reacting bilirubin represented less than 2% of the total serum bilirubin concentration, the total serum bilirubin concentration was used as a measure of unconjugated bilirubin in all subsequent experiments unless otherwise indicated.

lateral kidney of six untreated jj Gunn rats and seven treated jj Gunn rats previously utilized for tissue solute analysis. The kidney was bisected and small pieces of tissue were removed from the papilla, inner medulla, outer medulla, and cortex. Sample size was determined by tare weight. The samples were then homogenized for approximately 2 min in a solution containing 2 ml of chloroform and 1 ml of 0.01 N HCl. The sample was then centrifuged at 3,000 rpm for 10 min and the bilirubin content was measured in the supernatant layer.

Determination of T^eH₂O in jj and Jj rats. T^eH₂O was measured in four treated jj Gunn rats, five untreated jj Gunn rats, and three normal Jj littermates. Upon introduction into the study, all animals were 21 days old. The treated jj animals received continuous phototherapy and oral cholestyramine as described above. All jj rats were followed with weekly measurements of serum bilirubin concentration and Umax. Umax only was determined just before acute experiments in the Jj rats. All rats were deprived of food, but allowed free access to water during the night preceding the study. On the evening preceding the study, each animal received a subcutaneous injection of 1 U of vasopressin (Pitressin tannate in oil; Parke, Davis & Company, Detroit, Mich.). The rats were lightly anesthetized with sodium pentobarbital (32 mg/kg body wt), and polyethylene catheters were inserted into the femoral artery and vein. A polyethylene 160 catheter was inserted through a small suprapubic incision into the urinary bladder. Estimated surgical blood loss was replaced with isotonic saline (approximately 2 ml). The animals were then placed in a restraining cage and allowed to awaken. Mean arterial pressure was monitored throughout the entire procedure with a Sanborn 267 BC pressure transducer connected to a Sanborn recorder (Hewlett-Packard Co., Waltham Div., Waltham, Mass.). After completion of surgery, each animal received an i.v. inulin prime sufficient to achieve a plasma concentration of approximately 50 mg/100 ml. During the initial hour of the experiment, each animal received two separate i.v. infusions: a 1.2% saline solution administered initially at a rate of 0.02 ml/ min and a 0.85% saline infusion administered at a constant rate ranging between 0.0123 and 0.0185 ml/min depending on the weight of the animal. The latter infusion contained aqueous vasopressin (25 mU/ml) and inulin sufficient to maintain a blood level of approximately 50 mg/100 ml. After a 60-min period of equilibration, the 1.2% saline infusion was increased to 0.1 ml/min and three 20-min urine specimens and midpoint blood samples (200 µl/sample) were collected for determination of inulin clearance, urine flow, and urine osmolality. The infusion of 1.2% saline was gradually increased in a stepwise manner to levels as high as 2.3 ml/min so that the infusion rate always exceeded urine flow. Two or more urine and blood collections were obtained at each level of infusion.

Analytical methods. Inulin concentrations in plasma and urine were measured by the anthrone method of Führ, Kaczmarczk, and Krüttgen (13). The concentration of sodium and potassium in urine, blood, and tissue homogenates was determined by standard flame photometry. All osmolalities were determined by the method of freezingpoint depression with an Advanced osmometer (Advanced Instruments, Inc., Needham Heights, Mass.). Urine volumes were determined gravimetrically. Serum concentrations of bilirubin were determined with an ultramicro analytical system (model 150, Beckman Instruments, Inc., Fullerton, Calif.) adapted from the method of Malloy and Evelyn (14). Bilirubin measurements in supernates of tissue

homogenates were also performed with a modification of the method of Malloy and Evelyn (14). Urea and ammonia measurements were determined with a Uni-test kit (Hyland Div., Travenol Laboratories, Inc., Costa Mesa, Calif.), which employs a modification of a method described by Chaney and Marbach (15).

Statistical methods. Where applicable, data have been analyzed by Student's t test. Data are expressed as mean \pm standard error unless indicated otherwise and P values greater than 0.05 are considered to be nonsignificant.

RESULTS

Effect of phototherapy on Umax in weanling jj Gunn rats. The effects of phototherapy alone on reducing the concentration of serum bilirubin and increasing U_{max} in *jj* Gunn rats are depicted in Table I and Fig. 1. The average pretreatment serum bilirubin concentration was 11.2 ± 0.8 mg/100 ml in treated *jj* rats (n = 9), 12.3±0.4 mg/100 ml in untreated jj rats (n = 14), and $0.46 \pm 0.02 \text{ mg}/100 \text{ ml}$ in the *jj* littermates (n = 10). The difference in serum bilirubin concentrations between Jj and jj animals was highly significant (P < 0.001). The mean maximum urine osmolality obtained after 24 h of fluid deprivation in the same three groups of animals was $1,467\pm108$, 1.506±152, and 2.498±129 mosmol/kg H₂O, respectively. Again differences between J_i and j_i rats were highly significant (P < 0.001). Thus, contrary to a previous report (7), the jaundiced weanling ii rats already had a defect in maximum urine concentrating ability at 21 days of age when compared to their normal heterozygous littermates. The average serum bilirubin concentration throughout the 20-wk period of observation fell to 2.1 ± 0.06 mg/100 ml in the treated *ij* rats and remained elevated at 7.0 ± 0.10 mg/100 ml in the untreated *jj* littermates (P < 0.001). In the treated *jj* animals the mean maximum urine osmolality over the 20-wk period of observation was 2,531 ± 46 mosmol/kg H₂O, which compared quite favorably with a mean value of 2,765±52 mosmol/kg H2O achieved by the J_i littermates. Umax in the untreated jj littermates fell slightly from the initial values of 1,506±152 to 1,322±32 mosmol/kg H2O. Fig. 1 depicts the typical course of the treated and untreated *jj* rats during the 20 wk of observation. Within 1 wk after initiation of phototherapy, the elevated serum bilirubin concentration had fallen to less than 2.5 mg/ 100 ml, but the defect in U_{max} was only partially corrected. After 2 wk of continuous phototherapy, however, the treated jj rats could attain a Umax within the normal range. In contrast, Umax in the untreated jj rats continued to slowly decline over the 20-wk period. The average serum bilirubin concentration in the untreated jj rats declined early to approximately 7.0 mg/100 ml where it remained.

Effect of cholestyramine on urine concentrating abil-

		Serum biliru	bin concentration	ι	Jrine osmolality‡	
Therapy	No. of animals	Before therapy	During therapy	Before therapy	During therapy	
		mg	/100 ml		mosmol/kg H2O	
Phototherapy						
jj treated	9	11.2 ± 0.8	2.1 ± 0.06 P < 0.001 ¶	1,467±108	$2,531 \pm 46$ P < 0.001 ¶	
<i>jj</i> untreated	14	12.3 ±0.4 NS§	7.0 ± 0.10 P < 0.001§	1,506±152 NS§	$1,322 \pm 32$ P < 0.001§	
<i>Jj</i> control	10	0.46 ± 0.02 P < 0.001§	0.63 ± 0.04 P < 0.001§	$2,498 \pm 129$ P < 0.001§	$2,765 \pm 52$ P < 0.01§	
Cholestyramine						
jj treated	4	10.8 ±0.3 NS§	3.3 ± 0.1 P < 0.001 [\$,],¶	1,474±124 NS§	$2,330\pm 86$ P < 0.05 ; $P < 0.01$	
Combined therapy						
jj treated	23	11.3 ±0.7	1.6 ± 0.02 P < 0.001§,¶	1,380±64	$2,635 \pm 69$ NS§; $P < 0.001$ ¶	
jj untreated	22	10.5 ±0.2 NS	6.7 ± 0.3 P < 0.001	1,363±88 NS	$1,099 \pm 49$ P < 0.01	
<i>Jj</i> control	23	0.45 ± 0.09 P < 0.001	0.48 ± 0.03 P < 0.001	$2,445 \pm 161$ P < 0.001	2,552±135 NS	

 TABLE I

 Response of Weanling jj Gunn Rats to Phototherapy, Cholestyramine, or Combined Therapy*

* \pm Standard error of the mean.

[‡] Determined after 24 h of fluid deprivation.

§ Compared to treated jj rats receiving phototherapy only.

|| Compared to treated jj rats receiving combined therapy.

¶ Compared to pretreatment value.

ity in weanling jj Gunn rats. With initiation of oral cholestyramine therapy, the mean serum bilirubin concentration fell from a pretreatment level of 10.8 ± 0.3 mg/100 ml to a mean value of 3.3 ± 0.1 mg/100 ml

FIGURE 1 Seri.1 measurements of unconjugated serum bilirubin and U_{max} in treated and untreated weanling *jj* Gunn rats over a period of 20 wk. Treated animals were exposed to continuous phototherapy. Brackets indicate $\pm SE$ of the group.

322 N. B. Call and C. C. Tisher

over a 20-wk period (P < 0.001) (Table I). With lowering of the serum bilirubin concentration, mean Umax rose from a pretreatment value of 1,474±124 mosmol/kg H₂O to a mean value of 2,330±86 mosmol/ kg H₂O over the same period of time (P < 0.01). In comparison with phototherapy alone, significant differences in the response of the serum bilirubin level (P < 0.001) and U_{max} (P < 0.05) were noted during cholestyramine feeding, despite the fact that pretreatment values for serum bilirubin and Umax were not significantly different in the two groups. Thus, oral cholestyramine administered as 5% of the total weight of the dietary intake was not as effective as continuous phototherapy in reducing the serum bilirubin concentration and reversing the defect in urine concentration at low rates of osmolar clearance.

Effect of phototherapy and cholestyramine on urine concentrating ability in weanling jj Gunn rats. The combination of oral cholestyramine and phototherapy proved to be more effective than either modality alone in maintaining a reduced level of unconjugated serum bilirubin in the weanling jj rats (Table I). Serum levels of unconjugated bilirubin averaged 1.6 ± 0.02

	A re ot	Serum bilirubin concentration			Urine osmolality‡	
Animal no.	start of therapy	Before therapy	During therapy	Before therapy	During	therapy
	mo	mg/10	00 ml	mosmol/kg H2O		
48	8	7.4 ± 0.2	2.4 ± 0.1	777 ± 38	527 ± 22	P < 0.001
49	8	9.0 ± 0.6	2.9 ± 0.2	917 ± 43	$1,011 \pm 31$	P < 0.05§
68	4	7.6 ± 0.1	2.9 ± 0.2	$1,240 \pm 61$	$1,560 \pm 61$	P < 0.005
69	4	9.3 ± 0.3	2.9 ± 0.2	$1,093 \pm 191$	$2,074 \pm 89$	P < 0.001
70	4	8.0 ± 0.4	2.9 ± 0.2	$1,306 \pm 152$	$1,958 \pm 113$	P < 0.005
75	3	8.1 ± 0.4 P < 0	3.0±0.1 0.001§	$1,240\pm201$	1,715±68	P < 0.025

 TABLE II

 Response of Adult jj Gunn Rats to Cholestyramine and Phototherapy*

* \pm Standard error of the mean.

‡ Determined after 24 h of fluid deprivation.

§ Compared with pretreatment values.

mg/100 ml in rats receiving combined therapy versus 2.1 ± 0.06 mg/100 ml in rats receiving phototherapy alone (P < 0.001) and 3.3 ± 0.1 mg/100 ml in rats given cholestyramine alone (P < 0.001). There was no significant difference between Umax achieved in animals on combined therapy versus phototherapy alone (P = NS); however, a significant differences in Umax was observed between animals receiving combined therapy and oral cholestyramine alone (P < 0.05).

Effect of phototherapy and cholestyramine in adult jj Gunn rats (Table II). The pretreatment serum bilirubin concentration in the six adult *jj* rats ranged between 7.4 \pm 0.2 and 9.3 \pm 0.3 mg/100 ml. The pretreatment Umax in the four animals that were 3-4 mo of age varied between 1,093±191 and 1,306±152 mosmol/kg H2O compared to 777±38 and 917±43 mosmol/ kg H₂O in the two animals that were 8 mo of age. After initiation of therapy all six animals showed significant decreases in serum bilirubin levels (P <0.001), which were comparable in degree, but a modest improvement in Umax was noted in only one of the two older animals, while all four of the younger animals demonstrated significant though partial improvement from their pretreatment values (see Table II). One of the older animals (no. 48) actually demonstrated a decline in Umax over the period of therapy (from 777 ± 38 to 527 ± 22 mosmol/kg, P < 0.001).

Gross examination of the kidneys in these animals provided a possible explanation for the difference in response. Despite treatment, bilirubin deposition in the papillae of both of the older animals was still quite evident and was associated with varying degrees of destruction of the papilla and inner medulla. In addition, mild to moderate hydronephrosis was also evident in the kidneys of one of the older animals and was associated with a calculus (Fig. 2). Marked interstitial scarring which often extended from the medulla to the cortical surface was also present. In contrast, crystalline bilirubin deposits were much less obvious in

FIGURE 2 Gross appearance of the left kidney of an 8-moold jj Gunn rat (no. 48) demonstrating severe destruction of the renal papilla and inner medulla and deep cortical scarring. A large calculus (below) filled the entire renal pelvis. Magnification $\times 3.5$.

Reversibility of Urinary Concentrating Defect in Gunn Rats 323

		Tissue Solute Analysis in Treat	TABLE III ted and Untreated jj Gunn	: Rais and Control Jj Littermates*	
	Sodium	Potassium	Ammonia	Urea	Total osmolality‡
	Un- treated Treated Contre	Un- Un- ol treated Control	Un- treated Treated Control	Un- treated Treated Control	Un- treated Control
Papilla	mmol/kg H±0 191±23 464±37 372±5 P<0.001 NS P<0.001	mmol/kg H20 31 82 ±4 89 ±6 81 ±4 NS NS NSII	mmol/kg/ H±O 25±3 35±4 32±6 P <0.05 NS NSII	mmol/kg H ₂ O 381±50 1,074±74 898±82 P<0.001 NS P<0.001	mosmol/kg H₂O 977±99 2,250±148 1,868±129 P<0.001 NS P<0.001
Inner medulla	P < 0.001 P < 0.001 P < 0.001 P < 0.001	12 67±3 70±3 68±3 NS NS NS	14±3 17±2 18±3 NS NS NS	290主35 683主48 664主54 ア < 0.001 NS ア < 0.001	704±57 1.325±70 1.240±69 P <0.001 NS P <0.001
Outer medulla	111±7 145±9 101±′ P<0.01 P<0.001 NS∥	4 80±5 85±2 83±3 NS NS NS	19±3 20±3 17±2 NS NS NS	94±7 171±13 117±10 P<0.001 P<0.01 P<0.05	514±36 671±44 519±12 P <0.01 P <0.001 NS∥
Cortex	72 ±1 75 ±2 65 ± [.] NS <i>P</i> <0.05 NS	$\begin{array}{ccccccc} 4 & 93\pm 2 & 100\pm 3 & 81\pm 5 \\ P < 0.05 & P < 0.01 \\ P < 0.05 \ \end{array}$	22±3 23±3 32±7 NS NS P<0.05	42±3 38±4 32±7 NS NS P<0.05	416±7 434±9 388±19 NS <i>P</i> <0.05 NS∥
Urine	82±12 103±16 94± NS NS	21 129±7 229±21 294±29 P<0.001 NS	39±8 86±11 84±14 P<0.005 NS	513±90 1,387±100 1,433±132 P<0.001 NS	$\begin{array}{cccc} 1.013\pm 6.3 & 2.363\pm 116 & 2.377\pm 148 \\ P < 0.001 & NS \\ (1.098\pm 91) \$ & (2.645\pm 117) & (2.662\pm 151) \end{array}$
The untreat * ±Standar ‡ Calculated § Actual me ∥ Control J _J	ed group comprised ten <i>jj</i> Gum d error of the mean. at the standard formula 2[Na asured urine osmolality. vs. untreated <i>jj</i> Gunn rats.	a rats, the treated group eleven <i>jj</i> Gur + + K ⁺ + NH ^a] + urea.	ın rats, and eight heterozygous	<i>. Jj</i> littermates served as normal control	l animals.

	Bilirubin concentration					
Group	Papilla	Inner medulla	Outer medula	Cortex		
		$\mu g/mg \ lissue$				
Untreated jj rats $(n = 6)$	5.19 ± 2.50	0.12 ± 0.07	0.13 ± 0.06	0.04 ± 0.005		
Treated jj rats $(n = 7)$	0.32 ± 0.15 P < 0.05	0.04 ± 0.01 P < 0.10	0.03 ± 0.004 P < 0.10	0.04 ± 0.010 P < 0.30		

 TABLE IV

 Concentration of Tissue Bilirubin in Treated and Untreated jj Gunn Rats*

* Mean±standard error.

the younger adult animals receiving treatment and structural abnormalities in the cortex and medulla were less severe than in the older animals. Thus, it would appear that permanent structural damage occurs after prolonged elevation of serum and tissue concentrations of bilirubin in adult animals which becomes increasingly severe with age, finally reaching a point at which the defect in U_{max} is no longer reversible despite prolonged lowering of the serum bilirubin concentration.

Tissue urea and nonurea solute concentrations. The results of the tissue solute analyses are shown in Table III. Total tissue osmolality (calculated as 2[Na⁺ $+ K^{+} + NH_{a}$ + urea) was significantly reduced in the renal papilla and inner medulla of untreated jj Gunn rats when compared to values obtained in normal J_i littermates (P < 0.001). The decreased tissue osmolality was due to a significant reduction in the concentration of both sodium and urea (P < 0.001). Highly significant differences in total tissue osmolality and sodium and urea concentrations were also noted between untreated and treated weanling jj rats in the papilla, inner medulla, and outer medulla (P < 0.01 or greater). With treatment the reduction in the concentration of sodium and urea and total osmolality in the papilla and inner medulla of *jj* rats was restored to those levels obtained in the normal Jj littermates (treated jj vs. Jj littermates; P = NS). Thus, the reduction in the serum concentration of unconjugated bilirubin with the resultant correction of the defect in Umax during treatment was accompanied by a normalization of the urea and nonurea solute profile in the papilla and inner medulla of the *jj* Gunn rats when compared to their normal J_j littermates. The failure to demonstrate a difference in total tissue omolality between untreated jj rats and their Jj littermates in the outer medulla may reflect a sampling error. In both untreated and treated *jj* Gunn rats the anatomical boundaries of the outer and inner medulla are less distinct than in Jj rats. It is quite possible that samples from the outer medulla actually included small amounts of

tissue from the inner medulla as well, sufficient to raise the concentration of sodium and urea and hence the total tissue osmolality in both treated and untreated jj rats. It should be noted, however, that a significant difference in total tissue osmolality and sodium and urea concentrations did exist in the outer medulla of treated versus untreated jj rats (P < 0.01 or greater), thus demonstrating the effectiveness of reducing the serum and tissue concentration of bilirubin in these animals. The concentrations of NHs and potassium in the papilla, inner medulla, and outer medulla were comparable in the three groups of animals (P = NS).

Tissue bilirubin concentration. The bilirubin concentrations measured in the papilla, inner and outer medulla, and cortex in seven treated and six untreated *ij* rats are shown in Table IV. In all regions of the kidney except the cortex there was a reduction in the concentration of bilirubin in the treated animals; however, only in the papilla where the mean concentration was 5.2 μ g/mg of wet tissue in untreated rats versus $0.32 \ \mu g/mg$ of wet tissue in treated animals did the differences become statistically significant (P < 0.05). The wide range of values obtained in these analyses, especially in the papilla and inner medulla of the untreated rats was due in part to the problem of loss of bilirubin deposits during tissue harvesting. The large aggregates of bilirubin in the papilla and inner medulla were easily dislodged from the tissue and when this occurred the fragments of bilirubin were not included in the analyses, thus falsely lowering the final values.

 T^{e} H=0 formation in treated and untreated jj Gunn rats and Jj littermates (Table V and Fig. 3). The relationship between T^eH=0 and osmolar clearance (Coom) in the three groups of animals is depicted in Fig. 3. Within all ranges of Coom, T^eH=0 was significantly less in untreated jj rats when compared to their normal Jj littermates. In contrast, no significant difference was noted in T^eH=0 at any level of Coom between treated jj rats and their normal Jj littermates. Glomerular filtration rate determined during maxi-

Reversibility of Urinary Concentrating Defect in Gunn Rats 325

TABLE V							
$T^{\circ}H_{2}O$ Formation in Treated and	Untreated jj Gunn Rats and Jj Littermates*						

		Range of Comm (µl/min)							
Group	0-200		200-400		400-600		600-800		
	Cosm	TºH2O	Cosm	Т⁰н₂О	Cosm	Т°н20	Coam	Т°н20	
	<i>با</i> لم	min	μl,	min	nin µl/min		µl/min		
Normal Jj rats ($n = 3$)	124.0 ± 18.6 (n =	95.0±12.4 = 6)	303.1 ± 23.1 (n	169.0±9.9 = 9)	509.6 ± 14.1 (n	200.8 ± 6.2 = 13)	686.3 ± 16.3 (n	218.3 ± 13.8 = 7)	
Untreated jj rats $(n = 5)$	94.0 ± 16.6 (<i>n</i> = NS‡	52.7 ± 8.8 = 15) P < 0.01‡	278.0±14.1 (n NS‡	113.5 ± 7.3 = 15) P < 0.0005‡	494.7±13.3 (n NS‡	148.7 ± 10.0 = 17) P < 0.0005‡	680.9±13.9 (n NS‡	149.3 ± 12.6 = 13) P < 0.0005‡	
Treated jj rats ($n = 4$)	152.1±13.5 (n = NS‡	109.7±8.5 = 7) NS‡	305.6 ± 16.2 (<i>n</i>) NS‡	160.4±4.8 = 19) NS‡	513.9±18.9 (n = NS‡	194.9±4.2 = 13) NS‡	703.8±4.2 (n NS‡	202.6±3.8 = 12) NS‡	

* Mean \pm standard error.

‡ Compared to normal *Jj* rats.

mum T^eH₂O formation, that is at C_{01m} of 600-800 μ l/ min, was similar in the three groups of animals and averaged 2.60±0.11 ml/min in Jj rats versus 2.43± 0.17 ml/min in treated jj rats (P = NS) and 1.84±0.16 ml/min in untreated jj rats (treated versus untreated jj rats, P < 0.05). The lower GFR in untreated jj rats can probably be ascribed to the loss of renal parenchyma secondary to severe cortical and medullary scarring which was observed on gross inspection of the kidneys of the untreated jj animals.

DISCUSSION

Four findings of significance can be derived from the data compiled in the present study. First, as previously suspected, unconjugated bilirubin can be directly im-

FIGURE 3 Comparison of the relationship between $T^{e}H_{20}$ and C_{osm} in heterozygous Jj Gunn rats and treated and untreated jj Gunn rats. Each point represents the mean of all values for $T^{e}H_{20}$ and C_{osm} that fell within each of the four ranges of C_{osm} as demarcated by the broken vertical lines. The vertical and horizontal bars through the points represent ± 1 SE of mean $T^{e}H_{20}$ and C_{osm} , respectively. Data used to derive the curves are presented in Table V. At all ranges of C_{osm} , $T^{e}H_{20}$ was depressed in untreated jj Gunn rats (lower curve). With treatment (middle curve), $T^{e}H_{20}$ was comparable to that measured in normal heterozygous littermates (upper curve).

326 N. B. Call and C. C. Tisher

plicated in the urine concentrating defect previously described in the Gunn strain of rat. Second, the defect in urine concentration is only partially reversible and sometimes irreversible in adult jj Gunn rats, probably because of secondary parenchymal destruction of the renal medulla. Third, the urine concentrating defect is already present in weanling jj Gunn rats by 21 days of age, contrary to a previously published report (7). Fourth, a combination of phototherapy using blue fluorescent lights and oral cholestyramine feeding is the most effective means presently known to lower serum and tissue concentrations of unconjugated bilirubin in the jaundiced jj Gunn rat.

The results of the present study provide direct evidence that increased concentrations of unconjugated bilirubin in the serum and tissue are causally related to the defect in urine concentration in the *jj* Gunn rat. Although earlier studies had documented an association between hyperbilirubinemia and the renal impairment, a direct cause-and-effect relationship had not been established (2, 5, 6). In the present study, a prolonged reduction in the serum bilirubin level in weanling jj Gunn rats, induced through the use of phototherapy or oral cholestyramine or both, was associated with reversal of the impairment in urine concentration and T^eH₂O formation. The reduced concentrations of urea and nonurea solutes in the papilla and inner and outer medulla of untreated jj Gunn rats were restored to normal in treated *jj* littermates. The lowering of the hyperbilirubinemia with the attendant normalization of renal function was associated with a marked reduction in the concentration of bilirubin in the papilla and medulla. Thus, a direct cause-and-effect relationship appears well established.

The defect in urine concentrating ability was only partially reversible in young adult *jj* Gunn rats and es-

sentially irrevessible in older adult jj animals despite the fact that the concentration of serum bilirubin was lowered to levels comparable to the weanling jj rats in which the defect was totally reversible (Table II). Despite therapy, gross examination of the kidneys revealed persistent deposits of bilirubin in the papilla and inner medulla which were associated with varying degrees of parenchymal damage. Often the damage was so severe, especially in the oldest animals, that hydronephrosis of one or both kidneys was evident as well as extensive scarring which extended from the medulla to the cortex. Investigators have previously described extensive bilirubin deposition in untreated adult jj rats which was frequently associated with papillary necrosis (8). In the 3- and 4-mo-old animals in which only partial correction in the renal impairment was observed, definite, albeit less extensive parenchymal destruction and bilirubin deposition was evident. Thus, at some point in time between 21 days and 3-4 mo of age irreversible parenchymal damage occurs and appears to be slowly progressive in nature in the absence of therapy directed toward the reduction of serum and tissue concentrations of bilirubin.

In the present study it was observed that the jaundiced weanling jj rats already had a significant impairment in Umax at 21 days of age. After 24 h of fluid deprivation, the jj animals only attained a U_{max} of approximately 1,500 mosmol/kg H₂O, while their normal Jj littermates without the defect achieved a U_{max} of approximately 2,500 mosmol/kg H₂O (see Table I). These results conflict with previously published observations of Odell (7), who reported finding no significant difference in the urea and nonurea solute concentrations of the inner medulla in weanling jj and Jjrats and concluded that jaundiced weanling jj rats up to 21 days of age have normal medullary function. However, Odell (7) did not determine urine osmolality in the two groups of animals, which would have been a more sensitive method of estimating urine concentrating ability, and this may explain, at least in part, his failure to detect a defect in Umax in the jaundiced weanling jj rats. Possibly of equal importance in explaining the discrepancy in results between the two studies is the fact that the solute analyses were performed on the entire inner medulla, not just the papillary tip (7). As a result the average values for urea and nonurea solute concentrations that obtained undoubtedly underestimated the maximum solute concentration that existed at the papillary tip. Finally, in the present study the presence of a significant impairment in Umax in jaundiced weanling *jj* rats was further supported by the finding that jj rats receiving treatment to lower the concentration of unconjugated serum bilirubin increased their U_{max} by at least 1,000 mosmol/kg H₂O over a period of 2 wk.

The use of both phototherapy and oral cholestyramine to lower the serum concentration of unconjugated bilirubin in the jaundiced jj Gunn rats proved to be more effective than either modality alone (Table I). The use of phototherapy alone has been employed in several studies involving jj Gunn rats (10, 11, 16-18), but renal functional parameters were never determined. Phototherapy has also been used extensively in many neonatal intensive care units to lower the concentration of unconjugated serum bilirubin in newborn and especially premature infants (19), thereby minimizing the chances for the development of kernicterus with attendant brain damage. When the light source is of the proper wavelength, photodegradation of bilirubin in the skin and cutaneous capillaries occurs probably by a process of photo-oxidation resulting in the formation of water-soluble substances which are excreted principally in the bile, but to a lesser extent in the urine (18). Ostrow (18, 20) has demonstrated that in the *jj* Gunn rat subjected to phototherapy, the water-soluble bilirubin derivatives are chromatographically identical with those normally found in the bile under normal fluorescent lighting conditions, although the exact nature of all of the photoderivatives still remains in doubt. The effectiveness of the therapy depends, at least in part, on the flux of the radiant energy incident on the sample (20, 21). Blue fluorescent lamps with wavelength emission from 420 to 475 nm are the most effective light source and the degree of photodegradation is proportional to the energy flux emitted in the blue region of the visible spectrum (20, 21). It has also been noticed that during phototherapy there is a marked increase in the biliary excretion of unconjugated bilirubin, an amount which accounts for nearly half of the bilirubin that is catabolized during phototherapy (18, 20). Previous studies have demonstrated that cholestyramine, when ingested orally, is also capable of lowering unconjugated bilirubin by binding the pigment in the intestine, thereby preventing its reabsorption (12). These two pieces of evidence formed the basis for utilizing the combination of phototherapy and cholestyramine feeding to maintain lowered bilirubin levels in our animals. If previous observations were correct it was anticipated that the increased unconjugated bilirubin excreted by the biliary system in response to phototherapy should be bound by the cholestyramine in the gut, thus preventing its reabsorption. Although the fecal excretion of bilirubin was not measured, the two modalities were more effective than either one alone in reducing the level of serum bilirubin suggesting that cholestyramine did, in

Reversibility of Urinary Concentrating Defect in Gunn Rats 327

fact, increase total fecal excretion of unconjugated bilirubin.

The present study was not primarily designed to examine either the mechanism whereby unconjugated bilirubin alters renal concentrating ability or the site of the defect. However, previous studies in adult *jj* Gunn rats have documented the presence of alterations in both CH20 and T^cH20 (6), suggesting that the primary renal defect probably involves the ascending limb of Henle. As previously suggested (5, 6) bilirubin could interfere directly with active solute transport out of the ascending limb of Henle or alter the permeability of the segment to water. Either mechanism could explain the impairment in CH20 and T^cH20. In vitro data (22, 23) do suggest that unconjugated bilirubin in concentrations comparable to those that have been measured in the papilla of the jj Gunn rat (6) are capable of uncoupling oxidative phosphorylation. However, whether the concentration of bilirubin in the outer medulla, where active solute transport occurs, is sufficient to uncouple oxidative phosphorylation is open to question. Diamond and Schmid (24) were unable to demonstrate uncoupling of oxidative phosphorylation in mitochondria isolated from the brains of guinea pigs in which the total tissue concentration of exogenous ¹⁴C-labeled bilirubin infused into the animals was 10.6 $\mu g/g$ of tissue. In the present study the concentration of unconjugated bilirubin was 130 $\mu g/g$ of tissue in the outer medulla of untreated jjGunn rats and fell to 30 $\mu g/g$ of tissue with treatment. In addition, Martinez-Maldonado, Suki, and Schenker (6) were unable to demonstrate diminished concentrations of ATP in the medulla of jaundiced adult jj Gunn rats, suggesting that if bilirubin does interfere with solute transport in the renal medulla, the mechanism may not be dependent on ATP. Whatever the more acute and potentially reversible effect(s) of bilirubin may be, it is evident from the results of the present study that massive deposits of crystalline bilirubin which develop with time within the papilla and outer medulla result in irreversible parenchymal destruction including papillary necrosis, hydronephrosis, and severe medullary and cortical fibrosis. In such a setting the defect in urine concentration is no longer reversible.

ACKNOWLEDGMENTS

The authors express their appreciation to Dr. Myron Wolbarsht, Department of Ophthalmology, Duke University Medical Center, for helpful discussions during the conduct of this study and to Dr. Roger Yeary, Department of Veterinary Physiology and Pharmacology, The Ohio State University, Columbus, Ohio, who kindly supplied the original breeding stock of Gunn rats for our colony. The

328 N. B. Call and C. C. Tisher

technical assistance of Mrs. Helen Parks is gratefully acknowledged.

This work was supported in part by grants AM 13845 and AM 10844 from the U. S. Public Health Service.

REFERENCES

- 1. Gunn C. H. 1938. Hereditary acholuric jaundice in a new mutant strain of rats. J. Hered. 29: 137-139.
- 2. Gunn, C. H. 1944. Hereditary acholuric jaundice in the rat. Can. Med. Assoc. J. 50: 230-237.
- 3. Lathe, G. H., and M. Walker. 1958. The synthesis of bilirubin glucuronide in animal and human liver. *Biochem. J.* 70: 705-712.
- Schmid, R., J. Axelrod, L. Hammaker, and R. L. Swarm. 1958. Congenital jaundice in rats, due to a defect in glucuronide formation. J. Clin. Invest. 37: 1123-1130.
- 5. Odell, G. B., J. C. Natzschka, and G. N. B. Storey. 1967. Bilirubin nephropathy in the Gunn strain of rat. Am. J. Physiol. 212: 931–938.
- Martinez-Maldonado, M., W. N. Suki, and S. Schenker. 1969. Nature of the urinary concentrating defect in the Gunn rat. Am. J. Physiol. 216: 1386-1391.
- 7. Odell, G. B. 1968. The response of jaundiced and nonjaundiced weanling rats to thirsting. *Pediatr. Res.* 2: 237-242.
- 8. Bernstein, J., and B. H. Landing. 1962. Extraneural lesions associated with neonatal hyperbilirubinemia and kernicterus. Am. J. Pathol. 40: 371-391.
- Cremer, R. J., P. W. Perryman, and D. H. Richards. 1958. Influence of light on hyperbilirubinaemia of infants. *Lancet.* 1: 1094–1097.
- Broughton, P. M. G., E. J. R. Rossiter, C. B. M. Warren, G. Goulis, and P. S. Lord. 1965. Effect of blue light on hyperbilirubinaemia. Arch. Dis. Child. 40: 666-671.
- 11. Ballowitz, L., R. Heller, J. Natzschka, and M. Ott. 1970. The effect of blue light on infant Gunn rats. Birth Defects Orig. Artic. Ser. 6: 106-113.
- 12. Lester, R., L. Hammaker, and R. Schmid. 1962. A new therapeutic approach to unconjugated hyperbilirubinaemia. *Lancet*. 2: 1257.
- Führ, J., J. Kaczmarczk, and C. D. Krüttgen. 1955. Eine einfache colorimetrische Method zur Inulinbestimmung für Nieren clearance-Untersuchungen bei Stoffwechselgesunden und Diabetrikern. Klin. Wochenschr. 33: 729-730.
- Malloy, H. T., and K. A. Evelyn. 1937. The determination of bilirubin with the photoelectric colorimeter. J. Biol. Chem. 119: 481-490.
- Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for the determination of urea and ammonia. *Clin. Chem.* 8: 130-132.
- Ballowitz, L. 1971. Effects of blue and white light on infant (Gunn) rats and on lactating mother rats. *Biol. Neonate.* 19: 409-425.
- Butcher, R. E., C. V. Vorhees, C. W. Kindt, and W. J. Keenan. 1972. An experimental evaluation of photo-therapy for hyperbilirubinemia in the Gunn rat. Am. J. Dis. Child. 123: 576-578.
- Ostrow, J. D. 1971. Photocatabolism of labeled bilirubin in the congenitally jaundiced (Gunn) rat. J. Clin. Invest. 50: 707-718.

- 19. Lucey, J. F., M. Ferreiro, and J. Hewitt. 1968. Prevention of hyperbilirubinemia of prematurity by phototherapy. Pediatrics. 41: 1047–1054. 20. Ostrow, J. D. 1972. Mechanisms of bilirubin photo-
- degradation. Semin. Hematol. 9: 113-125.
- 21. Davies, R. E., and S. J. Keohane. 1970. Some aspects of the photochemistry of bilirubin. Boll. Chim. Farm. 109: 589-598.
- 22. Cowger, M. L., R. P. Igo, and R. F. Labbe. 1965. The

mechanism of bilirubin toxicity studied with purified respiratory enzyme and tissue culture systems. Biochemistry. 4: 2763-2770.

- 23. Zetterstrom, R., and L. Ernster. 1956. Bilirubin, an uncoupler of oxidative phosphorylation in isolated mitochondria. Nature (Lond.). 178: 1335-1337.
- 24. Diamond, I., and R. Schmid. 1967. Oxidative phos-phorylation in experimental bilirubin encephalopathy. Science (Wash. D. C.). 155: 1288-1289.