MEASUREMENT OF TOTAL WATER EXCHANGE¹

By L. H. NEWBURGH, MARGARET WOODWELL JOHNSTON AND MARK FALCON-LESSES

(From the Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor)

(Received for publication July 1, 1929)

As a rule when the terms, "water balance" or "water exchange," occur in clinical literature, the writer has in mind merely a comparison between the water which enters the body as food and drink with the water which leaves it as urine. Sometimes the water of the stool is also included. A statement that includes merely these increments of water is inaccurate and liable to be misleading, since it fails to take into account (1) the large amount of water that is evaporated from the skin and lungs; (2) the water that is formed by oxidation of the food; (3) water physically held as part of the protoplasm, but set free when the organism derives some of its energy by burning its own tissues.

I

We propose to describe a system which permits the observer to obtain an accurate account of all the sources and the total amount of water that becomes available for the organism on the one hand; and of the amount of water that leaves the organism on the other hand.

In working out a plan for dealing with all the increments of water, it is helpful to think of them under two separate headings: (1) Those that may be measured by standard laboratory methods; and (2) those whose value is obtained indirectly by calculation. The first group includes the water that the subject drinks as such, and the water contained in the food, urine and stool. The second group consists of the water evaporated from the skin and lungs, the water that is a byproduct of the combustion of materials, and water made free when body tissue is burned.

¹ Aided by a grant from The Fellowship Corporation.

TOTAL WATER EXCHANGE

In order to determine whether the organism has gained or lost water, it is necessary to classify the above mentioned portions of water under two headings. On one side of the balance sheet are gathered together all those increments of water that have become available as free water for the first time during the period. They include not only the water that enters the organism from the outside, but also the water formed by oxidation of the metabolic mixture,² and the water that is freed when body tissues are burned (preformed water). On the other side of the balance sheet all the fractions of water that have been given off by the organism, are brought together. They are the water of the urine and stool and the water that has been given off by

TA	BLE 1
Water	exchange

Available water	Water given off
grams	
A. Water drunk	E. Water of urine
B. Water of food	F. Water of stool
C. Water of oxidation	G. Insensible water
D. Preformed water	
Total	Total
Differen	nce

the skin and lungs³ (insensible water). Table 1 is a water balance form that was found useful.

The weights of each of these seven items of water were obtained in the following manner:

A. The subject drank water as desired from a "thermos bottle" fitted with a rubber stopper containing a glass drinking tube. The stoppered bottle filled with cold water was weighed at the beginning of the period and again at the end on a balance accurate to one gram. Less than one gram of water evaporated from the bottle in twenty-four hours.

B. Several different diets were used. The best results were obtained when only milk and sucrose was fed. During this period, the

² The metabolic mixture consists of all the materials burned by the organism during the period and thus often includes body tissues.

³ This water is chiefly or entirely removed from the body by evaporation, but it also includes any water lost as liquid sweat.

desired composition was secured by mixing appropriate amounts of cream (40 per cent), whole milk and skim milk. After thorough mixing a sample was removed. Its water content was determined by freezing and desiccation in vacuo (1). The sucrose was considered to be dry.

At other times the diet included bread, butter and bananas in addition to the milk mixture and sugar. Samples of banana were frozen and desiccated. The water content of the bread was determined by drying in the oven. Since the butter contained, at most, two grams of water, its water was not regularly determined. Fifteen per cent of its weight was allowed for water.⁴

Finally we were interested to know what results could be obtained when the usual types of food were employed instead of the highly

TABLE 2Insensible water

I	п
grams	grams
Subject at beginning	Subject at end
Food	Urine
Drink	Stool
Oxygen	Carbon dioxide
	Total

restricted diets just described. Accordingly the standard vegetables, fruits, meats, milk, eggs, bread and butter, cooked in the customary way, were fed. Complicated desserts and salad dressings were omitted. Since it seemed hopeless to obtain a fair sample from such a complicated mixture, the water content was determined as follows: A dietitian prepared two diets as nearly alike as she could. All that the subject was to receive at any meal was placed on a tray and the whole weighed. After the subject had eaten, the tray and dishes were weighed again. The duplicate diet was also placed on a tray which was then weighed. The food was next scraped into an enameled can of known weight, and the covered can was placed in a refrigerator.

⁴ In order to get accurate knowledge of the composition of the diet, a sample of the milk mixture was analysed for nitrogen (Kjeldahl), fat by the Babcock method, and ash. Samples of the dry bread and bananas were analysed for nitrogen.

TOTAL WATER EXCHANGE

The subject received three meals daily and the duplicate diet was also served in three portions, weighed and collected in the can. The latter was then weighed with the whole wet duplicate diet in it and placed on a steam bath whose temperature varied from 50° to 70°C. It took about two weeks to reach its final weight. The loss was assumed to have been caused entirely by evaporation of water. However such "dry" diets⁵ lost an additional small amount of weight after being in a desiccator over sulphuric acid.

MADTD -

TABLE 3	
Constants to obtain oxygen absorbed and	carbon dioxide given off
Oxygen	
Multiply protein	by 1.38
Multiply fat	by 2.86
Multiply carbohydrate	by 1.13
Carbon dioxide	
Multiply protein	by 1.46
Multiply fat	by 2.78
Multiply carbohydrate	by 1.54

C. The weight of the water that arises from protein, fat or carbohydrate when they are oxidized by the organism, has been determined by several students. We used the following values (2).

100	grams	protein	yields	41	grams H ₂ O
100	grams	fat	yields	107	grams H ₂ O
100	grams	carbohydrate	yields	60	grams H ₂ O

It is, however, necessary to know the metabolic mixture before this increment of water can be calculated. The method of calculating the former has already been described (3).

D. To obtain the preformed water the diet and the metabolic mixture are compared. When the former contains more energy than the latter and when no body protein is destroyed or when the caloric value of the two is the same, no preformed water is released. When, however, a submaintenance diet is fed, the destruction of body tissues frees the water that was physically held by them. But under

⁵ All of the dry duplicate diet collected during a period was ground and a sample analysed for nitrogen.

Weight of oxygen added to body to complete oxidation of metabolic mixture A. Protein (Muscle protein) Composition (4) $C = 51 \text{ per cent} \begin{cases} \text{Respiratory 40 per cent} \\ \text{Urine and feces 11 per cent} \end{cases}$ H to form water = 4.8 per cent O = 21 per cent 1 gram C requires 2.66 grams O to form CO2 1 gram C requires 1.33 grams O to form urea 1 gram H requires 8.0 grams O to form water therefore (a) Protein \times (0.40 \times 2.66) = 0 to form CO₂ (b) Protein \times (0.11 \times 1.33) = 0 to form urea (c) Protein \times (0.048 \times 8.0) = 0 to form H₂O (d) Protein $\times 0.21$ = intramolecular O (a + b + c) - (d) = 1.384, hence Protein \times 1.38 = Oxygen added B. Fat (tripalmitin) Composition C = 76 per centH = 12 per cent O = 12 per cent(a) Fat \times (0.76 \times 2.66) = 0 to form CO₂ (b) Fat \times (0.12 \times 8.0) = 0 to form H₂O (c) Fat $\times 0.12$ = intramolecular O (a + b) - (c) = 2.86, hence $Fat \times 2.86 = Oxygen added$ C. Carbohydrate (sucrose) Composition C = 42 per centH = 6.5 per centO = 51.5 per cent (a) CH \times (0.42 \times 2.66) = O to form CO₂ (b) CH \times (0.065 \times 8.0) = O to form H₂O (c) CH \times 0.515 = intramolecular O (a + b) - (c) = 1.125, hence Carbohydrate \times 1.13 = Oxygen added Weight of carbon dioxide yielded by the metabolic mixture A. Protein Protein \times (0.40 \times 3.66) = CO₂ B. Fat $Fat \times (0.76 \times 3.66) = CO_2$ C. Carbohydrate $CH \times (0.42 \times 3.66) = CO_2$

TABLE 4

these circumstances the total amount of preformed water released can not be calculated while glycogen is being destroyed, since it is not known how much water it binds. In the previous paper (3)we pointed out the ways by which we believed we had selected periods during which no glycogen (or a very few grams) was being oxidized.

Comparison between the ingoing and outgoing nitrogen shows whether body protein has been destroyed. It is customary to allow three grams of preformed water for every gram of protein. The remainder of the calories furnished by the body come from fat. Its preformed water is considered to be about ten per cent of its weight.

E. The water content of the urine was obtained by freezing and desiccating, in vacuo, duplicate samples of each twenty-four hourly amount, by means of the same technique employed for milk.

F. The subject defecated directly into a weighed enameled container by means of a commode. After recording the weight of the container plus the wet stool, the whole was placed on the steam bath without transfer. The loss of weight, which was complete in three or four days, was assumed to be entirely due to evaporation of water.⁶

G. We have obtained the weight⁷ of the insensible water by adding

⁶ All of the feces formed while any single diet was being used was mixed, ground and analysed for nitrogen. When the subject received only the milk mixture and sugar, fat and fecal ash was also determined.

⁷ Since the time of Sanctorius (1614) it has been known that there is a continuous loss of gaseous material from the body. Later studies have shown that this consists of carbon dioxide and water vapor. The combined weight of these two is greater than the weight lost by the organism as determined by the scales. (The terms "Insensible loss" or "Insensible perspiration" refer to the latter.) This is true because the loss of weight caused by the outward passage of carbon dioxide and water, is, in part, compensated for, by the weight of the oxygen absorbed.

Isenschmid (5) has expressed this relationship thus:

Insensible loss = $H_2O + CO_2 - O_2$.

If carbohydrate alone were being burned the weight of oxygen absorbed would equal the weight of the oxygen contained in the carbon dioxide given off. Under these conditions the insensible loss would equal the weight of the water plus carbon.

When, as is usually the case, fat and protein are burned, some of the oxygen absorbed is used to complete the oxidation of hydrogen as well as carbon. Then the insensible loss may be thought of as made up of water, carbon and hydrogen. Schwenkenbecher and Inagaki (6) pointed out this relationship in 1905.

Because of this varying relationship it is not possible to determine the total

the weight of everything that entered the body during the period to its weight at the beginning; and by adding the weights of everything that left the body during the period, other than water vapor, to its weight at the end of the period. The difference between the two sums is clearly the weight of the water lost insensibly. Table 2 shows what weights need to be used. The manner of obtaining the weights of the subject, food, drink, urine and stool, has already been described.

The weight of the oxygen is obtained by calculating how much of it had to be added to the body to complete the oxidation of the metabolic mixture; and the weight of the carbon dioxide is derived by means of the same type of calculation. The time required for these cumbersome calculations may be greatly reduced by means of numerical constants.

Table 3 shows the constants⁸ we have used. These constants were obtained by the calculations shown in table 4.

II

When it was desired to obtain the day to day water exchange of an individual we proceeded as follows:

1. The mean twenty-four hourly heat production was determined (3).

2. The metabolic mixture was calculated from this value, the composition of the diet and the outgoing nitrogen.

3. Next the weights of the oxygen absorbed and carbon dioxide given off on the basis of this mixture were obtained, and the oxygen value subtracted from that for carbon dioxide.

4. The subtraction of this latter difference from each twenty-four hourly insensible loss gives the weight of the water lost insensibly during each twenty-four hours.

5. The water formed by oxidation of the metabolic mixture was calculated.

⁸ Lusk (Science of Nutrition, 3rd ed., p. 28) states that it requires 133.43 grams oxygen to burn 100 grams meat protein; 288.5 grams oxygen for 100 grams fat; and 118.5 grams oxygen for 100 grams starch.

insensible water by merely deducting the weight of the carbon of the metabolic mixture from the insensible loss. The oxygen and carbon dioxide may be determined directly or calculated from the metabolic mixture. With the weights of the insensible loss, the carbon dioxide and oxygen, the insensible water may be obtained from Isenschmid's Equation.

6. The diet was compared with the metabolic mixture and the differences used to calculate preformed water, if body tissue was being oxidized; or if tissue was being added to the body, the appropriate amount of water (stored by it) was subtracted from the total available water.

The use of an average metabolic mixture for the period instead of calculating one for each twenty-four hours has two advantages. It tends to compensate for any irregularities of absorption and oxidation and so probably gives a better statement of what has been metabolized. Further, it greatly reduces the time required for calculation.

ш

A concrete example of the way in which water exchange was determined will now be given.

The normal subject and the general conduct of the study have already been described (3). From January 3 to January 8, 1929, his life and diet were unrestricted. The evening of January 8 he went to bed in the special room, and the next morning began to receive a milk mixture and sugar in amounts which were expected to be close to his requirement for maintenance.

The water exchange was determined for five consecutive days beginning January 11. During this time the milk mixture was found by analysis to contain 69 grams of protein, 83 grams of fat and 112 grams of carbohydrate, per day. In addition he received 155 grams of sucrose daily. The average twenty-four hourly heat production was 1907 calories. The diet yielded 2091 calories; and he destroyed 11.88 grams of body protein daily. The subtraction of the out-going calories from the calories of the diet plus those of the body protein, left 232 calories to be stored. For purposes of calculation it is assumed that they are stored as fat. This represents the storage of 24 grams of fat; or an addition to the body weight of 26 grams. On the other hand he lost 11.9 grams of protein from the body daily, which, with its water, represents a loss of 48 grams. Therefore, he should lose 22 grams of weight daily. His metabolic mixture was 81 grams protein (diet plus body protein); 267 grams carbohydrate (it is assumed that all the carbohydrate of the diet was burned); and 57 grams of fat (to supply the difference between the outgoing calories and the sum of the

calories derived from the protein and carbohydrate oxidized). From the above it is evident that there was released the water which was held by the 11.9 grams of body protein destroyed daily. That is an addition of 36 grams to the available water. On the other hand he stored 24 grams of fat which holds 2 grams of water; so that we may consider that 34 grams of preformed water became available.

The water formed by the oxidation of this metabolic mixture (obtained by means of the constants mentioned above) was 254 grams.

By means of the constants in table 3 it is found that the oxygen absorbed to complete the oxidation of the metabolic mixture weighed 576.5 grams and the carbon dioxide produced weighed 687.9 grams. The difference is 111 grams. The subtraction of this value from the twenty-four hourly insensible loss gives the daily insensible water.

Since the diet was unusual it was thought that the standard method of calculating the available calories of the diet might not be sufficiently accurate. For this reason the calories actually lost in the stool were determined by the oxy calorimeter of Benedict and Fox⁹ (7). The calories lost in the urine were calculated by multiplying the urinary N by 8, (following the custom of the Carnegie Institution). The caloric value of the stool was 4.35 calories per gram of dry weight. The total calories lost in the stool and urine for the period were 979 or 196 per day. The full heat value of the diet was obtained by multiplying protein by 5.65; fat by 9.54 and carbohydrate by 4. To this value was added the calories derived from body protein, making a total of 2317 daily. From this must be substracted the calories lost in urine and stool, leaving 2121 calories for metabolic disposal. The twenty-four hourly calories determined by insensible loss were 1907.

Since the full heat value has been assigned to the materials oxidized, the calories of the metabolic mixture in this case must consist of the total heat production plus the potential heat lost in the urine and stool, that is, 1907 + 196 = 2103. The metabolic mixture would accordingly be protein 81 grams, fat 61 grams and carbohydrate 267 grams. The only difference between the metabolic mixtures calculated by the two methods is four grams of fat. With the latter mix-

⁹ We are indebted to Dr. T. M. Carpenter of the Nutrition Laboratory of the Carnegie Institution for this determination.

THE JOURNAL OF CLINICAL INVESTIGATION, VOL. VIII, NO. 2

	Weight		Mi	k*		Urine			Stool		્ર	produc-
Date	subject 8:40 a.m.	Water	Total	Water	Total	Solids	N	Total	Solids	z	Insensible loss	Heat pro tion
1928	grams	grams	grams	per cent	grams	grams	grams	grams	grams	grams	grams	calo- ries
January 11.	59,520	268	2,299	87.8	1,527	45	12.04	122	17.5	0.72†	1,213	2,040
January 12.	59,385	724	2,200	87.5	2,182	49.6	12.33	0		0.72	1,073	1,860
January 13.	59,210	300	2,198	87.5	1,194	44.6	12.69	0		0.72	1,078	1,870
January 14.	59,590	368	2,201	87.5	1,376	41.7	11.76	22	6.5	0.72	1,175	1,990
January 15.	59,740	407	2,200	87.3	1,504	42.6	11.60	205	55	0.72	1,009	1,775
January 16.	59,785											

TABLE 5Data used in calculation of water exchange

* To obtain total weight of food, add 155 grams daily for sucrose.

 \dagger Total mixed stool analysed in duplicate for N and apportioned per day.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Date	Drink	Food water	Preformed water	Oxidation water	Water of urine	Water of stool	Insensible water	Available water	Outgoing water	Water balance
Available	energ	y of die	et calc	ulated	by sta	indard	l meth	bd		
	grams	grams	grams	grams	grams	grams	grams	grams	grams	
January 11	268	2,018	34	254	1,482	105	1,102	2,574	2,689	-115
January 12	724	1,925	34	254	2,132		962	2,937	3,094	-157
January 1.3	300	1,923	34	254	1,149		967	2,511	2,116	+395
January 14	368	1,926	34	254	1,334	16	1,064	2,582	2,413	+169
January 15	407	1,921	34	254	1,461	150	898	2,616	2,509	+107
Available energy of d	iet cal	culated	l from	full h	eat val	ue of	food, s	tool ar	nd urir	ne
January 11	268	2,018	34	259	1,482	105	1,101	2,579	2,688	-109
January 12	724	1,925	34	259	2,132		961	2,942	3,093	-151
January 13	300	1,923	34	259	1,149		966	2,516	2,115	+401
January 14	368	1,926	- 34	259	1,334	16	1,063	2,587	2,412	+175
January 15	407	1,921	34	259	1,461	150	897	2,621	2,508	+113

 TABLE 6

 Water exchange of a normal subject. Diet more than maintenance

ture the predicted daily loss of weight would be 24 grams instead of 22 grams as in the former case.

The remaining data needed to obtain the water exchange are shown

in table 5. With this information at hand, the values set forth in table 6 were secured. Columns 1, 2, 3 and 4 show the amounts of the various increments that make up the available water (column 8). Columns 5, 6 and 7 are the separate items of outgoing water, brought together in column 9. Finally column 10 shows how much water has been retained or lost by the organism during each 24 hours. The table also shows the effect on water exchange of each of the two ways of calculating the heat value of the diet. It is clear that the differences are not significant.¹⁰

IV

In order to estimate the degree of accuracy of this method for obtaining water exchange, a prediction of the water retention or loss for this same period has been made. This was done by comparing the actual change in weight with the theoretical loss of weight and assuming the difference to be water. See table 7. In the upper section of the table, the caloric value of the diet is calculated by means of the usual heat values assigned to food. In the lower section the caloric value of the diet is obtained by subtracting the calories lost in urine and stool from the full heat value of the diet. It is noticeable that a marked discrepancy between the predicted and determined water balance exists on the last day, but by both methods of calculation the agreement is surprisingly good for the other four days. One may conclude from this comparison that the usual caloric values assigned to food are sufficiently accurate to give excellent values for water balance. The reason for the error on the last day is not evident, but it has been consistently noticed that on days when an unusually large stool was voided the largest errors in water balance have occurred. It should be pointed out, however, that the total error for the five days was 44 grams or a little more than 8 grams per day.

Table 8 gives a comparison between the predicted and determined water balance when the normal subject was receiving a somewhat more complicated diet than the one just dealt with. In addition to the milk mixture and sucrose he was given bread, butter, bananas and

¹⁰ The heat value of the stool calculated from determinations of nitrogen, fat, ash and carbohydrate by difference, was 4.4 calories per gram of dry weight. This checks well with the value, 4.35 obtained by the oxy calorimeter.

grape-nuts. This diet, like the one taken during the period represented by table 7, also contained more energy than the maintenance requirement. This period followed one during which the subject was living under the special conditions of the investigation except that he was allowed the "house diet." The data for calculating the water balance of this period will be found in table 1 of the appendix.

The water balance of a third period of moderate overnutrition is shown in table 9. The diet contained milk, sucrose, bread, butter

Date	Change in subject's	Theoretical	Water balance			
	weight	loss	Predicted	Determined	Error	
	grams	grams	grams	grams	grams	
January 11	-135	22	-113	-115	2	
Ja nuary 12	-175	22	-153	-157	4	
January 13	+380	22	+402	+395	7	
January 14	+150	22	+172	+169	3	
January 15	+45	22	+67	+107	40	
Totals	•••••	· · · · · · · · · ·	+375	+399		
January 11	-135	24	-111	-109	2	
anuary 12	-175	24	-151	-151	0	
January 13	+380	24	+404	+401	3	
January 14	+150	24	+174	+175	1	
Janu a ry 15	+45	24	+69	+113	44	
Totals			+385	+429		

|--|

Comparison between predicted and determined water balance based on data in table 6

Error for period 44

and bananas, but the "grape-nuts" were not used. This period followed one of undernutrition during which there had apparently been a depletion of glycogen since the fasting respiratory quotient had fallen to 0.72 from the earlier level of 0.82. When the higher diet of this third period of overnutrition was taken by the subject, his quotient again rose to 0.82, indicating that he had replaced the glycogen destroyed in the preceding period. However, when calculating the metabolic mixture used in compiling table 9, it was assumed that the extra calories of the diet were stored as fat. It is instructive

to see how much difference in water exchange would be caused by using a metabolic mixture based on the assumption that all the extra calories were stored as glycogen. The metabolic mixture in the first case was: protein 66 grams; fat 76 grams; carbohydrate 270 grams. In the second case it would be: protein 66 grams; fat 88 grams; carbohydrate 243 grams. The change in metabolic mixture would affect the water of oxidation, the insensible water and the preformed water. Since the preformed water held by glycogen is not known, we have left

	Change in	Theoretical	Water balance			
Date	subject's weight	loss	Predicted	Determined	Error	
1928	grams	grams	grams	grams	grams	
November 13	-475	22	-453	-433	20	
November 14	-175	22	-153	-161	3	
November 15	-470	22	-448	-402	46	
November 16	+415	22	+437	+423	14	
November 17	+85	22	+107	+133	26	
November 18	-20	22	+2	-31	33	
November 19	-350	22	-328	-275	53	
November 20	+225	22	– 247	+255	8	
November 21	-10	22	+12	+7	5	
November 22	+190	22	+212	+229	17	
November 23	-125	22	-103	-106	.3	
Totals			-468	-361		

TABLE 8
Comparison between determined and predicted water balance in overnutrition

Error for period 107

all of the preformed water out of the following calculation. While this obviously fails to give a true statement of the water exchange, it does not affect the relationship between the predicted and determined water balance. This is true because the predicted loss of weight as ordinarily calculated includes the preformed water which also makes up part of the available water. This fact comes out clearly when the two balances are compared by means of algebraic equations:

(1) Predicted water balance = (Solids + Preformed Water) \pm (Change in weight).

(2) Determined water balance = (Preformed water + Drink + Food Water + Oxidation water) - (Outgoing water). If our predicted and determined balances are correct, then

Predicted water balance = Determined water balance

Therefore

(Solids + Preformed water) ± (Change in weight) = (Preformed water + Drink + food water + Oxidation water) - (Outgoing water)

Hence

 $(Solids) \pm (Change in weight) = (Drink + Food water + Oxidation water) - (Out$ going water)

TABLE 9

Comparison between determined and predicted water balance when glycogen is being stored

D	Change in	Theoretical	Water balance			
Date	subject's weight	loss	Predicted	Determined	Error	
1928	grams	grams	grams	grams	grams	
December 3	+145	-15	+160	+173	13	
December 4	+520	-15	+535	+527	8	
December 5	-150	-15	-135	-118	17	
December 6	-50	-15	-35	-7	28	
December 7	-25	-15	-10	-26	16	
December 8	-80	-15	-65	-52	13	
Totals			-497	-450		
	Error for p	eriod 47				

A detailed statement of the water exchange for the period under consideration, showing the effect of each metabolic mixture, will be found in table 10. Consideration of table 10 brings out several points of interest: (1) If one is trying to account for the difference between the actual weight of an individual and what he would be expected to weigh as the result of any given diet, the discrepancy, due to retention or loss of water, may be determined as successfully when preformed water is left out of the account as when it is included.

BLE 10	exchange
TAI	Water

A. When the extra calories of the diet are stored as fat and the metabolic mixture is protein 66 grams; fat 76 grams; carbohydrate 270 grams

8		e l'accorde
Pre- dicted balance	grams frams +160 +535 +535 -135 -35 -35 -10 -10 +450 +450	ohydrat $+125$ $+125$ $+500$ -170 -70 -170 -120 $+240$ $+240$
Pre- dicted change in weight	grams -15 -15 -15 -15 -15 -15 -15 -15	s; carbo + 20 + 20 + 20 + 20 + 20 + 20
Actual change in weight	grams +145 +520 -150 -50 -80	88 gram +145 +520 -150 -50 -25 -80
Deter- mined balance	grams +173 +527 -118 -7 -26 -52 +497	ams; fat $+139$ $+493$ -152 -152 -60 -60 -87 $+292$ -87
Out- going water	grams 2,152 2,084 2,353 2,749 2,749 2,441 2,441	ein 66 gr 2, 164 2, 096 2, 365 2, 365 2, 319 2, 453
Insensi- ble water	grams 909 1,024 1,073 1,151 1,151 1,136 1,261	e is prote 909 1,024 1,073 1,151 1,136 1,261
Water of stool	grams 143 0 75 124 110	mixtur 143 0 75 124 110 110
Water of urine	grams 1,100 1,060 1,205 1,474 1,171 1,171 1,070	ms 1,100 1,000 1,060 1,205 1,474 1,171 1,070
Availa- ble water	grams 2, 326 2, 612 2, 236 2, 743 2, 743 2, 390	and the meti 243 grams 243 grams 2,303 1, 2,589 1, 2,589 1, 2,513 1, 2,213 1, 2,259 1, 2,259 1, 2,367 1, 2,367
Oxida- tion water	grams 270 270 270 270 270 270 270	cogen a 267 267 267 267 267 267 267 267
Pre- formed water	grams 19 19 19 19 19	d as gly
Drink	grams 552 838 455 962 502 612	re store 552 838 455 962 502 612
Food water	grams grams 1,484 1,491 1,491 1,490 1,484	he diet a 1,484 1,484 1,491 1,491 1,490 1,484
Date	December 3. December 4. December 5. December 6. December 8.	B. When the extra calories of the diet are stored as glycogen and the metabolic mixture is protein 66 grams; fat 88 grams; carbohydrate243 grams243 grams243 grams243 grams243 grams243 grams243 grams243 grams243 grams243 grams244 grams1,484 552267 2,303 1,1001,431 909 2,164 +139 +145 +20 +1251,484 838267 2,589 1,060 01,024 2,096 +493 +520 +20 +500December 61,491 962 267 2,513 1,205 75 1,073 2,365 -152 +150 +20 -170December 61,491 962 267 2,529 1,171 01,474 124 1,151 2,761 -41 -50 +20 -150267 2,367 1,070 1,10 1,261 2,453 -60 -25 +20 -450December 71,484 612 267 2,367 1,070 1,10 1,261 2,453 -60 -25 +20 -450December 8

B. Preformed water is not included in either the available water or in the predicted loss of weight. A. Preformed water is included in the calculation in the usual manner.

This is demonstrated in figure 1, which represents that period¹¹ in the study of the normal subject, when the preformed water was the largest; namely 65 grams daily. The solid line (A) is the predicted weight when the predicted loss is only the weight of protein and fat destroyed; and the broken line (B) is the predicted weight when the

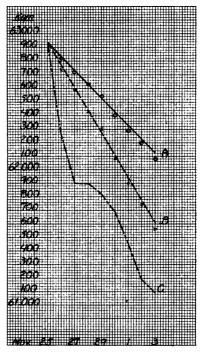


FIG. 1

C, actual weight of subject. B - -, and $B \ge x$; predicted and corrected weight obtained in usual way. A -, and A = 0; predicted and corrected weight when no preformed water is included in the calculation.

predicted loss of weight includes the preformed water in addition to the protein and fat. The circles and crosses indicate the subject's real weight (C) corrected each day by adding or subtracting the amount of water that had been held or lost by the subject. But in

¹¹ Not the same period as used for Table 10. It was the first period of undernutrition and immediately preceded that presented in table 10.

the case of the corrections represented by the circles, the water balances used to make the corrections were the differences between the outgoing water and the available water when the latter did not include the preformed water. Hence both the predicted loss of weight (A) and the water balance are reduced to the same degree. This corrected weight is as close to the predicted weight when preformed water is not considered as when it is. The difference between the determined and predicted water balance is, in each case, 46 grams for the whole period of 8 days.

_	Change in	Theoretical		Water balance	
Date	subject's weight	loss	Predicted	Determined	Error
1929	grams	grams	grams	grams	grams
January 16	-525	100	-425	-404	21
January 17	-25	100	+75	+78	3
January 18	-235	100	-135	-135	0
January 19	-235	100	-135	-138	3
January 20	-30	100	+70	+64	6
January 21	-235	100	-135	-124	11
January 22	-175	100	-75	-76	1
January 23	+45	100	+145	+129	16
January 24	-330	100	-230	-214	16
January 25	-250	100	-150	-166	16
Totals			-985	-966	

	TABLE 1	L	
Comparison between	predicted and determin	ed water balance	e in undernutrition

. . . .

(2) It is also desirable to realize that the errors in water balances found in table 10 are largely attributable to something other than an incorrect statement of the metabolic mixtures, since the errors between the predicted and determined balances are essentially the same even though the fat and carbohydrate values of the two metabolic mixtures are different.

The period represented in figure 1, was the first period of undernutrition in which water exchange was studied. The data will be found in table 3 of the appendix. That the underfeeding caused destruction of glycogen is clearly indicated by the fall of ten points in the respiratory quotient. It was, however, assumed, when constructing the metabolic mixture, that all of the endogenous calories came from protein and fat. The water balance thus obtained indicates that the organism lost 695 grams of water during the first two days. Most of this water was presumably released by the destruction of glycogen. If the latter has the same hydrophylic coefficient as protein, the water loss would indicate that about 200 grams of glycogen had been destroyed.

The next period, like the one represented by figure 1, also shows the effect of the first days of undernutrition with a probable destruction of glycogen. It also followed an interval during which the subject

Period	Date	Protein	Fat	Carbo- hydrate	Diet calories	Total nitrogen out	Heat produc- tion	Average fasting R.Q.
		grams	grams	grams	calories	grams	calories 24 hours	•
Α	November 25– December 2	60	44	126	1,185	12.56	2,000	0.73
в	January 16–26	63	26	148	1,078	11.1	1,746	0.76
С	December 9–24	57	22	178	1,138	10.55	1,813	0.77

 TABLE 12

 Comparison of three periods of undernutrition in which carbohydrate in diet differed

was receiving more than the requirement for maintenance. The respiratory quotient fell from 0.83 during the maintenance period to 0.76. Nevertheless glycogen was not included in the metabolic mixture for reasons pointed out above. The water balance will be found in table 11, and the analytical data are brought together in table 4 of the Appendix. The discrepancy between the determined and predicted water balance is only 19 grams for the ten days, even though no allowance is made for the (presumable) destruction of glycogen.

It will be interesting to compare a period of undernutrition during which the diet was relatively high in carbohydrate with the two periods just discussed (fig. 1 and table 11) in which the carbohydrate was sufficiently low to (presumably) cause the organism to burn glycogen. The three periods are compared in table 12 and figure 2. While the metabolic conditions are not strictly comparable in the three periods,

it will be noted that in period A in which the greatest caloric deficit exists, the dietary carbohydrate is lowest. This would imply the greatest demand upon the glycogen reserve. In period B and period C the only significant difference is in the dietary carbohydrate. This relationship between carbohydrate in the diet and the destruction of glycogen appears to be confirmed by the trend of the fasting respiratory quotient.

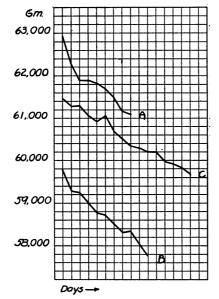


FIG. 2. WEIGHT CURVES DURING THREE PERIODS OF UNDERNUTRITION

The steep initial fall in (A) suggests a large destruction of glycogen, whereas the relative smoothness of (C) suggests that little or no glycogen was destroyed. The small but definitely steep initial fall in (B) suggests a condition intermediate between (A) and (C).

The rapid fall in weight in period A (fig. 2) also indicates a considerable destruction of glycogen whereas in period C, the relatively smooth curve indicates that there was no significant destruction of glycogen. The weight curve in period B suggests an intermediate condition in regard to glycogen.

The water balance of this third period of undernutrition, when the dietary carbohydrate was relatively high and little or no glycogen was destroyed, will be found in table 13. The metabolic data for the period are brought together in table 5 of the Appendix.

The water exchange during a fourth period of undernutrition is presented next in table 14. Ten days before the beginning of this period a low calory diet consisting solely of milk and sugar was instituted and continued without change. It is probably true that the

	Change in	Theoretical		Water balance	
Date	subject's weight	loss	Predicted	Determined	Error
1928	grams	grams	grams	grams	grams
December 9	-165	114	-51	-49	Ż
December 10	+20	114	+134	+156	22
December 11	-260	114	-146	-155	9
December 12	-120	114	-6	+6	12
December 13	+110	114	+224	+221	3
December 14	-355	114	-241	-227	14
December 15	-165	114	-51	-61	10
December 16	-170	114	-56	-60	4
December 17	-45	114	+69	+66	3
December 18	-105	114	+9	+68	59
December 19	± 0	114	+114	+104	10
December 20	-230	114	-116	-128	12
December 21	-50	114	+64	+76	12
December 22	-105	114	+9	0	9
December 23	-140	114	-26	-33	7
December 24	+130		+244	+243	1
Totals			+174	+227	

TABLE 13	
Comparison between predicted and determined water balance in under	u tr ition

Error for period 53 grams

destruction of glycogen had ceased before the period began, and that all the endogenous calories came from protein and fat. Since there was a falling heat production during this long period, two metabolic mixtures were calculated.

The data needed to obtain the water exchange will be found in the Appendix, tables 6 and 7. The former is for the first metabolic mixture and the latter for the second mixture.

180

We come now to the study of water exchange in patients. We have selected from our series what we consider to be an average example. The subject was a girl aged fourteen years, of low mentality, and who

	Change in	Theoretical		Water balance	
Date	subject's weight	loss	Predicted	Determined	Error
1929	grams	grams	grams	grams	grams
January 26	+50	127	+177	+175	2
January 27	-115	127	+12	+33	21
January 28	-285	127	-158	-147	11
January 29	+25	127	+152	+139	13
January 30	+15	127	+142	+129	13
January 31	+35	127	+162	+175	13
February 1	-270	127	-143	-153	10
February 2	-430	127	-303	-293	10
Totals	• • • • • • • • • •		+41	+58	
February 3	+285	97	+382	+369	13
February 4	-225	97	-128	-105	23
February 5	+65	97	+162	+149	13
February 6	-125	97	-28	-41	13
February 7	+115	97	+212	+198	14
February 8	-345	97	-248	-201	47
February 9	-150	97	-53	-55	2
February 10	-90	97	+7	-4	11
February 11	-35	97	+62	+48	14
February 12	-350	97	-253	-215	38
February 13	+20	97	+117	+101	16
February 14	-5	97	+92	+75	17
February 15	-310	97	-213	-176	37
Totals			+108	+143	
Grand Totals			+149	+201	

 TABLE 14

 Comparison between predicted and determined water balance in undernutrition

Error for period 52 grams

had an endocrine disturbance that had caused gigantism and precocious sexual development. Her basal metabolic rate was about 25 per cent below normal. She did not cooperate well with us. She was fed a mixed diet of the type described on page 163; and the water content of the food was accordingly obtained by means of the duplicate diet as described on page 163. The duplicate diet was analysed for nitrogen but not for fat or carbohydrate. The food table values were used for the latter two. The urine solids were obtained by dessication in a partial vacuum over sulphuric acid. We found this method much less satisfactory than the procedure of Shackell (1).

The subject was allowed to be out of bed in a wheel chair several hours daily, but was not permitted to leave the room unless she was to be brought to the laboratory.

When the period was over it was found that the daily record of the insensible loss was unsatisfactory since the heat production obtained from it was repeatedly less than the basal metabolic rate. Upon looking back we recalled that the patient often sat in the wheel chair with bare legs in a room that, at times, was distinctly cool. The small insensible loss was apparently caused by chilling the lower extremities.

In order to compensate for this error we proceeded as follows: A few weeks after the period just described had ended, the patient was strictly confined to bed under continuous guard. Bathing was ommitted. Under these conditions the total heat production for three consecutive days was 1900, 1930, and 1930 calories. A number of determinations of the basal metabolic rate, preceding and following this special interval of three days, gave an average of 1506 calories. The total calories when the patient was continuously confined to bed were accordingly 27 per cent more than the basal calories. During the earlier period, when the insensible loss was irregular, twenty-one determinations of the basal metabolic rate gave an average of 1604 calories for 24 hours. If the total calories at this time had been 27 per cent greater, they would have been 2037. But since the patient had been more active during those days we inferred that 100 calories should be added for such factors. This gave us the final value of 2137 as the total twenty-four hourly heat production.

Before presenting the water balances for the long period when 2137 calories was assumed to be the average heat production, it is desirable to see what results were obtained during the special three day period when the heat production was so uniform. (See table 15 and Appendix, table 8.) The large error of the second day was, as usual, on a day when the patient had a very large stool. The considerable errors on the other two days are largely attributable to the complicated diet.

The water balances of the long period when the heat production was estimated to be 2137 calories for each twenty-four hours, are presented in table 16. (The data will be found in table 9 of the Appendix.)

In spite of the greater likelihood of larger errors for the reasons given above, the results are fairly satisfactory. From February 25th to March 12th the patient should have lost 2996 grams of weight,

D (Change in	Theoretical		Water balance	
Date	subject's weight	gain	Predicted	Determined	Error
1928	grams	grams	grams	grams	grams
April 24	-157	7	-164	-134	30
April 25	-565	7	- 572	-517	55
April 26	+129	7	+122	+100	22
Totals			-614	-551	

TABLE 15
Water balance in a patient confined to bed but receiving a complicated diet

Error for period 63 grams

but her weight fell only 10 grams during these sixteen days. The predicted retention of water was 2886 grams and the data showed a retention of 2672 grams. Accordingly, in spite of the complicated diet and the doubt regarding the figure obtained for heat production, the determined retention of water was only 7 per cent less than the prediction.

Following the large retention of water there was an excessive output of water. During the nine days from March 12 to March 21 the patient should have lost 1629 grams. Since her weight fell 3995 grams, the difference, 2366 grams, was the predicted water loss. The determined loss was 2266 grams. In this case the determined loss was only 4 per cent less than the prediction.

D (Change in	Theoretical		Water balance	
Date	subject's weight	loss	Predicted	Determined	Error
1928	grams	grams	grams	grams	grams
February 25	0	181	+181	+157	24
February 26	-85	181	+96	+66	30
February 27	-480	181	-299	-249	50
February 28	+300	181	+481	+448	33
February 29	+280	181	+461	+428	33
March 1	-350	181	-169	-144	25
March 2	-230	181	-49	-39	10
March 3	-110	181	+71	+42	29
March 4	+500	181	+681	+650	31
March 5	-290	181	-109	-48	61
March 6	-110	181	+71	+44	27
March 7	+260	181	+441	+396	45
March 8	-360	181	-179	-210	31
March 9	+170	181	+351	+338	13
March 10	-225	181	-44	-79	35
March 11	+720	181	+901	+872	29
Totals		•••••	+2,886	+2,672	
March 12	-665	181	-484	-411	73
March 13	-90	181	+91	+71	20
March 14	-640	181	-459	-434	25
March 15	-300	181	-119	-107	12
March 16	-700	181	-519	-486	33
March 17	-195	181	-14	-48	34
March 18	-875	181	-694	-673	21
March 19	-150	181	+31	+13	18
March 20	-380	181	-199	-191	7
Totals		••••••	-2,366	-2,266	
Grand Totals	•••••	•••••	+520	+406	

TABLE 16
Water balances when complicated diet is fed and subject is up in a chair during the day

Error for period 114 grams

v

There remains now the discussion of the degree of accuracy of the water balance obtained by the above methods. We have dealt with this question by comparing the predicted balance with the determined balance. This implies that the prediction is absolutely correct. But the information at hand does not warrant such an assumption to its full extent, since the predicted balance is derived from the

mber		I	aily err	or	beriod	
Period number	Date	Maximal	Minimal	Average	Error for period per day	Notes
		grams	grams	grams	grams	
1	January 26– February 15	47	2	17	2.5	Diet completely analysed. Under- nutrition. No destruction of glycogen
2	December 9–24	57	2	12	3.3	Diet completely analysed. Under- nutrition. Little or no destruction of glycogen
3	January 16–25	21	0	9	1.9	Diet completely analysed. Under- nutrition. Moderate destruction of glycogen
4	November 25– December 2	37	4	12	5.7	Diet completely analysed. Under- nutrition. Much glycogen de- stroyed
5	December 3–8	28	8	16	7.8	Diet completely analysed. Overnu- trition. Much glycogen stored
6	November 13–23	53	3	21	9.7	Diet completely analysed. Overnu- trition. No data regarding glycogen
7	January 11–15	40	2	11	4.8	Diet completely analysed. Overnu- trition. No data regarding gly- cogen
8	April 24–26	55	22	36	21.0	Only nitrogen of diet determined. Duplicate diet used. Overnutri- tion. Period only three days
9	February 25– March 20	73	7	30	4.6	Only nitrogen of diet determined. Duplicate diet used. Undernutri- tion. Small destruction of gly- cogen

TABLE 17Error in determination of water balance

metabolic mixture and it usually is not possible to avoid small inaccuracies in the latter. Accordingly the error, as the term is used in table 17, is not a final measure of the method; but is an approximation, approaching nearest to the truth when the statement of the metabolic mixture is most nearly correct. In period 1 of table 17, the conditions were most suitable for obtaining a satisfactory statement of the materials burned. The values for period 1 may, therefore, be accepted as the probable error of the method.

The conditions for period 2 are only slightly different from those of period 1; so that the error is nearly the same.

It will be seen that the average error is only about 15 grams per day, but that a mistake of 50 grams may occur on any single day. Since the water that the subject had to deal with from day to day was about 2100 grams, the average error made in accounting for it was less than 1 per cent; and, what is more important, the maximal error was less than 3 per cent.

Interestingly the errors for periods 3 and 4, when the metabolic mixture cannot be correct because it does not include the glycogen that was destroyed, are no greater. Likewise, in the three periods of overnutrition, periods 5, 6 and 7 in the table, when the same doubt exists regarding glycogen, the error is of only slightly greater magnitude than in period 1.

The two periods 8 and 9, when the conditions were not so simple nor so satisfactory, gave results that are better than anticipated.

The last column of table 17 deals with the error in water balance for whole periods, expressed in 24 hourly amounts. This is not the same as the average error, since the daily differences tend to counteract each each other and so reduce the discrepancy. The error in determining the water balance for the period was always less than 0.5 per cent of the water to be dealt with, except in period 8 where the period is too short to be of much value in this regard.

BIBLIOGRAPHY

- 1. Shackell, L. F., Am. J. Physiol., 1909, xxiv, 325. An Improved Method of Desiccation with Some Applications to Biological Problems.
- 2. DuBois, E. F., Basal Metabolism in Health and Disease, 2nd ed., Lea & Febiger, Philadelphia, 1927, pp. 24, 29, 216.
- 3. Johnston, M. W., and Newburgh, L. H., J. Clin. Invest., 1929, viii, 147. The Determination of the Heat Eliminated by the Human Being.
- 4. Lusk, G., Elements of the Science of Nutrition, 3rd ed., W. B. Saunders Co., Philadelphia, 1917, p. 39.

- 5. Isenschmid, Med. Klin., 1918, xiv, 1128. Die Bestimmung der wasserbilanz am Krankenbett.
- 6. Schwenkenbecher, A., and Inagaki, Arch. fur Exper. Path., u., Pharmacol., 1906, liv, 168. Ueber den Wasserwechsel des fiebernden Menschen.
- 7. Benedict, F. G., and Fox, E. L., J. Biol. Chem., 1925, lxvi, 783. A Method for the Determination of the Energy Values of Foods and Excreta.

	Weight		Milk	<u> </u>	Bread	g	bananas	nas	*sti				Urine		Stool	10	əĮ	onpo
Date s	subject 8:40 a.m.	Water	Total	Water	Total	Water	Total	Water	Grapenu	*19JJuff	Sucrose	Total	sbiloZ	N	Total	sbilo2	diznsznI zzol	Heat pro tion
	grams gr	grams g	grams	per cent	grams	per cent	grams	per cent	grams	grams	grams	grams	grams	grams	grams	grams	grams	calo- ries
November 13 6	64,010	491 1	,312	85.0	100	39.1	197	75.5	61	16	66	1,116		46.5 11.03	111	23	1,524	524 2,450
November 14 63,	3, 535	191	,297	84.7	103	40.4	197	75.4	61	16	98	727	44.2 11	11.38	0		1,239	239 2,080
November 15 63,	3,360	21	,312	85.8	100	42.5	201	77.4	99	16	102	727	45.3	45.3 11.25	154	37	1,383	,383 2,275
November 16	2,890	591 1	,312	84.9	101	42.0	198	76.6	63	16	109	622	44.8	44.8 12.05	0		1,352	352 2,220
November 17 [63,	3,305 1,	1221	,310	85.3	103	38.8	202	73.6	09	16	109	1,389	44.8	44.8 12.39	177	43	1,271	,271 2,100
November 186	63,390	669	,304	84.7	100	33.8	198	73.5	61	15	112	1,396		44.611.20	0		1,087	,087 1,880
November 196	63,370	571 1	,312	84.5	100	39.4	198	73.7	58	15	111	921	40.7	40.7 10.56	606	82	1,190	190 2,020
November 20 63,	3,020	5041	,310	85.4	98	37.0	198	73.8	61	15	100	816		41.3 10.85	136	17	1,109	109 1,920
November 216	63,245	4001	,307	85.1	101	40.0	198	74.2	60	15	66	919	42.5	42.5 11.30	0		1,270	270 2,110
November 22 6	63,235	548 1	,304	84.8	102	40.0	197	74.6	59	16	98	734	41.2 11	11.02	147	26	1,252	252 2,100
November 236	63,425	765 1	,311	85.3	101	38.8	199	74.5	8	16	98	1,574		43.7 10.79	0		1,100	1,900
November 24 [63,	3,300																	

TABLE 1

APPENDIX

Normal subject: overnutrition. November 13–23. 1928

Stool N: Average 1.7 grams per day. Metabolic mixture: Protein 77 grams; fat 63 grams, carbohydrate 309 grams. * The average of several samples gave 2.5 per cent water for grapenuts and 13.8 per cent for butter.

.

188

	-onpo	Heat pro tion	calo- ries	, 795	,930	,025	,100	,085	,240	
		disnəenI szol	grams	19 1,019 1,795	1,134 1,930	26 1,183 2,025	26 1,261 2,100	1,2462,085	1,371 2,240	_
	Stool	sbilo2	'grams grams grams grams grams grams	19		26	26		30	
	St	Total	grams	11 1,139 38.7 11.6 162	0	101	150	•	140	
		N	grams	11.6	10.3	12.7	10.3	8.9	9.7	
	Urine	sbilo2	grams	38.7	36.4	34.9	40.0	32.6	35.8	
80		Total	grams	1,139	11 1,096	1, 240	1,514	1,204	1,106	
Normal subject: Overnutrition. December 3-8, 1928		Butter*	grams	11	11	10	6	10	10	
nber 3-		Sucrose		98	98	100	100	8	100	
Decen	Bananas	Water	per cent	74.8	76.1	76.6	75.6	76.2	75.7	grams.
ition.	Bain	Total	grams	198	197	198	197	200	197.	e 270 g
ernutr	Bread	Water	per cent	38.7	39.3	40.3	40.0	40,3	39.2	rams. 1ydrati tter.
ect: Or	Br	[stoT	grams	100	100	101	<u>10</u>	101	85.6 101	270 gr carbol
ul subj	Milk	Water	per cent	86.0	86.0	86.1	86.4	85.8	85.6	ydrate rams; ied in 1
Norme	W	Letal	gran s grams grams	1,508	1,506	1,511	1,507	1,513	1,513	arbohy at 76 g contair
		Water	grams	552	838	455	962	502	616	ams; c lay. ams; fa
	Weight	subject 8:40 a.m.	gran s	. 61,095 552	61,240	. 61,760	61,610	. 61,560	61,535 616 61 455	at 88 gr im per d in 66 gr ved for v
		Date		December 3	December 4	December 5	December 6.	December 7	December 8	Diet: Protein 59 grams; fat 88 grams; carbohydrate 270 grams. Stool N: Average 0.63 gram per day. Metabolic mixture: Protein 66 grams; fat 76 grams; carbohydrate 270 grams. * 1.5 grams daily was allowed for water contained in the butter.

TABLE 2

i

L. H. NEWBURGH, M. W. JOHNSTON AND M. FALCON-LESSES 189

.

	411 10 17	· man man in in		O INTO INTO INTO INTO IN	.410444	1100017	- Ci 120	TI ADDINAL TO TRACEMONI T' 12TO	1,170	5				
÷	Weight	Weter	Milk	×	Bre	Bread	But-		Urine		Stool	0	Insen-	Heat
Late	8:40 8:40 a.m.	אמרכו	Total	Water	Total	Water	ter*	Total	Total Solids	z	Total	Solids	loss	produc- tion
	grams	810 MS	grams	grams per cent	grams	grams per cent	grams	810 ms	grams	grams	grams	grams	grams	calories
	. 62,935	310	1,502	88.8	102	38.2	15	1,216	42.8	10.8	140	20	1,248	2,085
November 26.	. 62,260	378	1,484 8	88.7	100	37.9	16	1,157	45.3	12.2			1,180	2,000
November 27	. 61,900	587	1,498	88.5	100	41.3	15	874 45.0 12.7	45.0	12.7	0		1,331	2,190
November 28	. 61,895	564	1,502	88.4	100	39.9	16	987	43.4	12.8	0		1,275 2,	2,115
November 29	. 61,815	479	1,500	88.4	100	40.3	15	803	42.6	12.8	205	46	1,206	2,035
November 30	. 61,695	715	1,501	88.4	101	39.7	13	1,436	44.4	11.5	102	14	1,022	
December 1	. 61,465	819	1,500	88.7	101	40.9	16	1,684	43.2	12.2	0		1,027	1,800
December 2	. 61, 190	547	1,501	,501 88.3	100	40.5	16	1,004	42.0	11.9	101	27	1,153	1,965
December 3.	61,095													
T:		1 1												

Normal Subject, Undernutrition. November 25-December 2, 1928 TABLE 3

Diet: Protein 60 grams; fat 44 grams; carbohydrate 126 grams.

Stool N: Average 0.45 gram per day. Metabolic mixture: Protein 79 grams; fat 131 grams; carbohydrate 126 grams. * Two grams daily was allowed for the water contained in the butter.

190

		man from a martine a				art for or finning		<u>\</u>				
Ě	Weight		Milk	Ik	c		Urine		Stool	loc	Insensi-	Heat
Late	subject 8:30 a.m.	Water	Total	Water	bugar	Total	Solids	z	Total	Solids	ble loss	produc- tion
	grams	grams	grams	per cent	grams	grams	grams	grams	grams	810MS	grams	calories
January 16	59,785	290	1,999	89.5	45	1,585	42.8	10.24	187	33	1,087	1,880
January 17	59,260	234	2,000	89.5	1 4	1,176	39.1	10.01	131	18	995	1,760
January 18	59,235	202	2,001	89.6	1 4	1,382	38.7	10.79	107	15	993	1,760
January 19	59,000	143	2,000	89.7	46	1,301	36.7	10.14	124	15	908	1,760
January 20	58,765	474	2,001	89.9	45	1,557	41.0	11.24	0	0	992	1,745
January 21	58,735	197	2,000	89.7	45	1,340	37.9	10.48	162	27	974	1,730
January 22	58,500	103	2,001	89.6	46	1,270	37.1	9.99	119	17	935	1,680
January 23	58,325	173	1,999	89.7	45	1,163	38.4	10.37	0	0	1,008	1,760
January 24	58,370	310	2,001	89.7	45	1,650	39.3	10.72	159	28	877	1,610
January 25	58,040	223	1,998	89.7	46	1,514	39.3	11.06	0	0	1,003	1,760
January 26	57,790											
Diet: Protein 63 grams; fat 26 grams; carbohydrate 148 grams. Stool N: Average per day 0.6 gram. Metabolic mixture: Protein 69 grams: fat 24 grams: carbohydrate 148 grams.	grams; cal ram. grams: fa	rbohydra t 24 graa	ate 148 g ns: carbo	rams. hvdrate	148 grat	Su Su						
		5		•	D	i	٠					

Normal subject. Undernutrition. January 16-25, 1929 TABLE 4

L. H. NEWBURGH, M. W. JOHNSTON AND M. FALCON-LESSES 191

	Weight		Milk	IF.	Bread	ad	: F	c		Urine		Sti	Stool	Insen-	Heat
Date	subject 8.40 a.m.	Water	Total	Water	Total	Water	Butter	ougar	Total	Solids	z	Total	Solids	sibie loss	produc- tion
1928	grams	grams	grams	per cent	grams	per cent	grams	grams	grams	grams	grams	grams	grams	grams	calories
December 9	. 61,455	187	1,397	90.5	130	40.6	11	40	852	37.6	9.49	0	0	1,077	1,870
December 10	61,290		1,400	90.06	131	41.0	11	40	1, 146	37.1	10.25	90	27	1,086	1,880
December 11	61,310	502	1,399	89.9	129	37.7	11	40	1,202	36.5	9.82	0	0	1,138	1,930
December 12	61,050		1,399	90.06	130	38.8	10	40	913	38.0	10.47	53	19	1,087	1,880
December 13	60,930		1,403	90.3	130	39.0	10	40	1,150	36.4	10.38	0	0	995	-
December 14	61,040		1,402	90.1	130	41.0	10	40	1,208	37.4	10.65	51	17	994	1,760
December 15	60,689		1,404	90.1	130	39.3	10	40	1,176		9.09	0	0	939	-
December 16	60,520		1,403	89.9	130	40.9	10	4	1,229		10.58	0	0	973	1,730
December 17	60,350		1,400	90.1	129	39.3	10	<u>`</u> 40	1,212	37.7	10.44	0	0	970	-
December .18.	60,305		1,399	90.06	130	41.5	10	40	957		9.90	321	62	1,107	
December 19	60,200	-	1,396	90.1	130	37.0	10	40	1,016	34.4	9.66	0	0	776	1,740
December 20.	. 60,200	194	1,401	90.0	129	39.8	10	40	906	30.9	10.32	0	0	1,098	1,890
December 21	59,970		1, 399	89.8	130	37.8	6	39	789	32.8	10.45	110	28	1,063	
December 22	59,920	448	1,400	90.1	129	38.6	10	40	855	32.9	10.70	0	0	1,276	
December 23	59,815	67	1,403	90.0	130	40.4	11	41	718	37.7	9.85	0	0	1,074	-
December 24	59,675		1,398	90.6	128	36.7	10	40	644	37.0	9.94	0	0	1,058	1,840
December 25	59,805														

Normal subject. Undernutrition. December 9-25, 1928 TABLE 5

Diet: Protein 57 grams; fat 22 grams; carbohydrate 178 grams. Stool N: Average per day 0.43 gram. Metabolic mixture: Protein 66 grams; fat 93 grams; carbohydrate 178.

.

192

	Weight		Milk	₽.		Urine			Stool		Insensi-	Heat
Date	subject 8:40 a.m.	Water	Total	Water	Total	Solids	Z	Total	Solids	Νţ	ble loss	produc- tion
	grams	grams	grams	per cent	grams	grams	grams	grams	grams	grams	grams	calories
January 26.	57,790	75	1,997	90.1	1,108	39.2	11.07	0		0.6	958	1,715
January 27	57,840	283	2,000	89.7	1,350	41.2	11.21	113	29	0.6	979	1,730
January 28.	57,725	119	2,000	89.6	1,156	37.9	11.25	147	25	0.6	1,145	1,950
January 29.	57,440	68	2,000	89.7	959	38.2	10.95	0		0.6	1,128	1,930
January 30.	57,465	159	2,015	89.7	1,206	39.1	11.73	0		0.6	908	1,760
January 31	57,480	193	2,023	89.7	1,111	38.5	11.33	105	27	0.6	1,010	1,780
February 1	57,515	147	1,997	89.7	1,422	40.2	11.38	0		0.6	1,037	1,815
February 2	57,245	0	2,001	89.7	1,334	39.8	10.66	85	20	0.6	1,057	1, 840
Diet: Protein 63 grams (N × 6.25); fat 26 grams (Babcock); carbohydrate 148 grams (by difference—sucrose 45 grams)	.25); fat 2	26 grams	(Babcoc	k); carbo	ohydrate	148 grar	ns (by di	fference-	-sucrose	45 gram	ıs).	.
Metabolic mixture: Protein 74 grams; fat 103 grams; carbohydrate 148 grams.	grams; ta	t 103 gra	ums; carb	ohydrate	e 148 grai	ms.						

TABLE 6 Normal Subject. Undernutrition. January 20-February 2

L. H. NEWBURGH, M. W. JOHNSTON AND M. FALCON-LESSES

ses 193

† The stool from January 26 to February 15 was mixed and analysed in duplicate for N. The value obtained was apportioned per day.

* To obtain total weight of diet add 45 grams for sucrose.

Date	Weight of subject	Water	Milk	Ik	Urine	•	Stool	
	8:40 a.m.		Total	Water		Total	Solids	N
1929	grams	grams	grams	per cent	grams	grams	grams	grams
February 3.	56,815	166	2,000	89.7	905	0		0.6
February 4.	57,100	88	2,000	89.7	1,236	188	37	0.6
February 5.	56,875	74	2,002	89.7	985	0		0.6
February 6.	56,940	121	2,000	89.7	1,340	0		0.6
February 7	56,815	249	2,000	89.7	1,257	0		0.6
February 8	56,930	200	2,001	89.7	1,360	300	62	0.6
February 9	56,585	134	1,999	89.7	1,303	60	10	0.6
February 10.	56,435	430	2,001	89.7	1,696	0		0.6
February 11.	56,345	73	2,000	89.7	1,274	0		0.6
February 12.	56,310	86	2,001	89.7	1,180	361	53	0.6
February 13.	55,960	0	2,001	89.7	1, 132	0		0.6
February 14.	55,980	117	1,999	89.7	1,326	0		0.6
February 15	55,975	43	1,990	89.7	1,106	288	4 ‡	0.6
February 16.	55,670							

Diet and stool N: The same as in table 6. Metabolic mixture: Protein 69 grams; fat 91 grams; carbohydrate 148 grams.

194

Normal subject. Undernutrition. February 3-15, 1929

TABLE 7

40C	Weight	Wreter	Patient's		Duplicate diet		Urine		St	Stool	Insensi-	Heat
2	8:25 8.25 a.m.	Matci	diet	Total	Dry	Total	Solids	z	Total	Solids	ble loss	produc- tion
1928	grams	8rams	8101115	grams	grams	84048	grams	grams .	grams	grams	810785	calories
April 24	90,927	1,202	90,927 1,202 1,568	1,593	-	1,652	56	12.12	179		1,096	1,900
April 25	90,770	1,235	1,527	1,503	381	1,579	55	12.19	620	73	1,128	1,930
April 26	90,205	1,327	1,466	1,445	384	1,540	54	12.65	0		1:,124	1,930
April 27	90,334		•									
Diet (food tables): Protein 85 grams; fat 100 grams; carbohydrate 186 grams.	rams; fat	100 grai	ns; carbo	hydrate	186 grai	DS.						

Overnutrition with mixed diel. A pril 24–26, 1928

TABLE 8

N, in; 85 + 6.25 = 13.6 grams. N, out; 12.3 (urine) + 10 per cent for stool = 13.5 grams. Metabolic mixture: Protein 85 grams; fat 93 grams; carbohydrate 186 grams.

.

Date	Weight	Water	Patient's	Duplicate diet	te diet		Urine		Ste	Stool	Insensible
nam	8:45 a.m.	1000	diet	Total	Dry	Total	Solids	N	Total	Solids	loss
1928	grams	grams	grams	grams	grams	grams	grams	grams	grams	grams	grams
February 25	94,200	161	1,056	1,052	192	1,111	32.7	9.97	0		742
February 26	94,200	928	1,050	1,034	196	1,304	42.2	13.88	0		759
February 27	94,115	1,255	1,050	1,055	193 -	905	23.8	7.62	467	75	1,413
February 28	93,635	1,252	1,035	1,024	188	1,077	26.9	9.43	0		910
February 29	93,935	1, 343	984	974	200	1,354	38.0	11.47	0		693
• March 1	94,215	1,042	1,089	1,085	200	1,131	26.8	7.60	401	63	949
March 2	93,865	788	1,024	1,034	181	1,177	41.6	13.02	0		865
March 3	93,635	1,891	965	957	200	2.086	40.4	11.88	0		880
March 4	93,525	1,366	1,023	1,019	201	1,148	35.1	11.36	0		741
March 5	94,025	1,152	1,066	1,064	197	1,220	36.3	10.43	432	85	856
March 6	93,735	1,036	1,026	1,018	199	1,448	40.6	11.18	0		724
March 7	93,625	1,611	1,061	1,052	207	1,293	31.6	9.70	0		1,119
March 8	93,885	1,062	1,062	1,056		1,138	18.7?	6.08	0		1,346
March 9	93,525	1,435	1,038	1,036	187	1,255	35.7	10.05	0		1,048
March 10	93,695	754	976	67	201	1,096	36.4	10.07	0		859
March 11	93,470	1,632	1,005	1,004	211	854	44.1	10.43	0		1,063
March 12.,	94,190	1,151	1,087	1,072	205	1,466	38.5	10.66	434	115	1,003
March 13	93,525	1,306	986	992	202	1,602	37.0	9.38	0		780
March 14	93,435	1,101	1,033	1, 025	192	1,708	41.8	11.21	199	44	867
March 15	92,795	1,735	971	957	192	1,305	26.4	6.60	390	53	1,311
March 16	92;495	1,519	1,065	1,047	179	1,815	38.3	9.36	554	53	915
March 17	91,795	1,900	1,013	1,012	223	1,937	50.5	11.21	0		1,171
March 18	91,600	1,281	969	961	189	1,798	37.7	10.08	339	41	988
March 19	90,725	1,316	1,089	1,087	215	1,440	37.8	11.07	202	21	913
March 20	90,575	1,409	1,030	1,023	201	1,268	35.5	10.25	385	41	1,166
March 21	90,195										
Dist. Deotoin 61 5 mmm (NI V 6 75), fat 40 mmm (food table), confidente 74 mmm (food table)	1 ~ K 251.	fat 40 and	(food +	(-		74 ~~~~	/food tob		-		

Undernutrition with mixed diet. February 25 to March 20, 1928 TABLE 9

196

TOTAL WATER EXCHANGE

Diet: Protein 64.5 grams (N × 6.25); fat 40 grams (food table); carbohydrate 74 grams (food table). Stool N: Average daily 1.32 grams. Metabolic mixture: Protein 73 grams; fat 172 grams; carbohydrate 74 grams.